IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.3229.html
   My bibliography  Save this paper

A Note on the Pricing of Basket Options Using Taylor Approximations

Author

Listed:
  • Pablo Olivares
  • Alexander Alvarez

Abstract

In this paper we propose a closed-form approximation for the price of basket options under a multivariate Black-Scholes model, based on Taylor expansions and the calculation of mixed exponential-power moments of a Gaussian distribution. Our numerical results show that a second order expansion provides accurate prices of spread options with low computational costs, even for out-of-the-money contracts.

Suggested Citation

  • Pablo Olivares & Alexander Alvarez, 2014. "A Note on the Pricing of Basket Options Using Taylor Approximations," Papers 1404.3229, arXiv.org.
  • Handle: RePEc:arx:papers:1404.3229
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.3229
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Olivares & Matthew Cane, 2014. "Pricing Spread Options under Stochastic Correlation and Jump-Diffusion Models," Papers 1409.1175, arXiv.org.
    2. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    3. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    4. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Olivares, 2014. "Pricing of Basket Options Using Polynomial Approximations," Papers 1404.3160, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of Exchange Option Prices under Stochastic Volatility Jump-Diffusion Dynamics," Papers 2002.10202, arXiv.org.
    2. Olivares Pablo & Villamor Enrique, 2017. "Valuing Exchange Options Under an Ornstein-Uhlenbeck Covariance Model," Papers 1711.10013, arXiv.org.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Villamor, Enrique & Olivares, Pablo, 2024. "Pricing exchange options under stochastic correlation," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    7. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    8. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    9. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    10. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Carol Alexander & Andrew Scourse, 2004. "Bivariate normal mixture spread option valuation," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 637-648.
    13. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    14. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    15. Farkas, Walter & Gourier, Elise & Huitema, Robert & Necula, Ciprian, 2017. "A two-factor cointegrated commodity price model with an application to spread option pricing," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 249-268.
    16. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    17. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    18. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    19. Nicola Cufaro Petroni & Piergiacomo Sabino, 2015. "Cointegrating Jumps: an Application to Energy Facilities," Papers 1509.01144, arXiv.org, revised Jul 2016.
    20. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.3229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.