IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.01144.html
   My bibliography  Save this paper

Cointegrating Jumps: an Application to Energy Facilities

Author

Listed:
  • Nicola Cufaro Petroni
  • Piergiacomo Sabino

Abstract

Based on the concept of self-decomposable random variables we discuss the application of a model for a pair of dependent Poisson processes to energy facilities. Due to the resulting structure of the jump events we can see the self-decomposability as a form of cointegration among jumps. In the context of energy facilities, the application of our approach to model power or gas dynamics and to evaluate transportation assets seen as spread options is straightforward. We study the applicability of our methodology first assuming a Merton market model with two underlying assets; in a second step we consider price dynamics driven by an exponential mean-reverting Geometric Ornstein-Uhlenbeck plus compound Poisson that are commonly used in the energy field. In this specific case we propose a price spot dynamics for each underlying that has the advantage of being treatable to find non-arbitrage conditions. In particular we can find close-form formulas for vanilla options so that the price and the Greeks of spread options can be calculated in close form using the Margrabe formula (if the strike is zero) or some other well known approximation.

Suggested Citation

  • Nicola Cufaro Petroni & Piergiacomo Sabino, 2015. "Cointegrating Jumps: an Application to Energy Facilities," Papers 1509.01144, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1509.01144
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.01144
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    3. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    4. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    5. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    6. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, University of Reading.
    2. Pellegrino, Tommaso & Sabino, Piergiacomo, 2014. "On the use of the moment-matching technique for pricing and hedging multi-asset spread options," Energy Economics, Elsevier, vol. 45(C), pages 172-185.
    3. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    4. Farkas, Walter & Gourier, Elise & Huitema, Robert & Necula, Ciprian, 2017. "A two-factor cointegrated commodity price model with an application to spread option pricing," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 249-268.
    5. Matteo Gardini & Piergiacomo Sabino, 2022. "Exchange option pricing under variance gamma-like models," Papers 2207.00453, arXiv.org.
    6. Chun-Sing Lau & Chi-Fai Lo, 2014. "The pricing of basket-spread options," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1971-1982, November.
    7. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    8. Olivares Pablo & Villamor Enrique, 2017. "Valuing Exchange Options Under an Ornstein-Uhlenbeck Covariance Model," Papers 1711.10013, arXiv.org.
    9. J. C. Arismendi & Marcel Prokopczuk, 2016. "A moment-based analytic approximation of the risk-neutral density of American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(6), pages 409-444, November.
    10. Tommaso Paletta & Arturo Leccadito & Radu Tunaru, 2013. "Pricing and Hedging Basket Options with Exact Moment Matching," Papers 1312.4443, arXiv.org.
    11. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    12. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    13. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    14. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    15. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    16. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    17. Pablo Olivares & Alexander Alvarez, 2014. "A Note on the Pricing of Basket Options Using Taylor Approximations," Papers 1404.3229, arXiv.org.
    18. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    19. Ziming Dong & Dan Tang & Xingchun Wang, 2023. "Pricing vulnerable basket spread options with liquidity risk," Review of Derivatives Research, Springer, vol. 26(1), pages 23-50, April.
    20. de Braganca, Gabriel Fiuza & Daglish, Toby, 2012. "Can market power in the electricity spot market translate into market power in the hedge market?," Working Paper Series 4130, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.01144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.