IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1309.0110.html
   My bibliography  Save this paper

ADI schemes for pricing American options under the Heston model

Author

Listed:
  • Tinne Haentjens
  • Karel in 't Hout

Abstract

In this paper a simple, effective adaptation of Alternating Direction Implicit (ADI) time discretization schemes is proposed for the numerical pricing of American-style options under the Heston model via a partial differential complementarity problem. The stability and convergence of the new methods are extensively investigated in actual, challenging applications. In addition a relevant theoretical result is proved.

Suggested Citation

  • Tinne Haentjens & Karel in 't Hout, 2013. "ADI schemes for pricing American options under the Heston model," Papers 1309.0110, arXiv.org.
  • Handle: RePEc:arx:papers:1309.0110
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1309.0110
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuli Ikonen & Jari Toivanen, 2007. "Componentwise Splitting Methods For Pricing American Options Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 331-361.
    2. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    3. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    4. Stephane Villeneuve & Antonino Zanette, 2002. "Parabolic ADI Methods for Pricing American Options on Two Stocks," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 121-149, February.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornelis S. L. De Graaf & Qian Feng & Drona Kandhai & Cornelis W. Oosterlee, 2014. "Efficient Computation Of Exposure Profiles For Counterparty Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    2. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    3. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    4. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    5. Maryam Safaei & Abodolsadeh Neisy & Nader Nematollahi, 2018. "New Splitting Scheme for Pricing American Options Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 405-420, August.
    6. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    7. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
    8. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    9. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    10. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    11. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    12. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    13. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    14. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
    15. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    16. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    17. Bertram During & James Miles, 2015. "High-order ADI scheme for option pricing in stochastic volatility models," Papers 1512.02529, arXiv.org.
    18. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    19. Fabien Le Floc'h, 2021. "Pricing American options with the Runge-Kutta-Legendre finite difference scheme," Papers 2106.12049, arXiv.org.
    20. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.0110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.