IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1301.5497.html
   My bibliography  Save this paper

Suitability of Capital Allocations for Performance Measurement

Author

Listed:
  • Eduard Kromer
  • Ludger Overbeck

Abstract

Capital allocation principles are used in various contexts in which a risk capital or a cost of an aggregate position has to be allocated among its constituent parts. We study capital allocation principles in a performance measurement framework. We introduce the notation of suitability of allocations for performance measurement and show under different assumptions on the involved reward and risk measures that there exist suitable allocation methods. The existence of certain suitable allocation principles generally is given under rather strict assumptions on the underlying risk measure. Therefore we show, with a reformulated definition of suitability and in a slightly modified setting, that there is a known suitable allocation principle that does not require any properties of the underlying risk measure. Additionally we extend a previous characterization result from the literature from a mean-risk to a reward-risk setting. Formulations of this theory are also possible in a game theoretic setting.

Suggested Citation

  • Eduard Kromer & Ludger Overbeck, 2013. "Suitability of Capital Allocations for Performance Measurement," Papers 1301.5497, arXiv.org, revised Jul 2014.
  • Handle: RePEc:arx:papers:1301.5497
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1301.5497
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5446 is not listed on IDEAS
    2. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    3. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Models in Cooperative Game Theory," Springer Books, Springer, edition 0, number 978-3-540-77954-4, July.
    4. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    5. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    6. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    7. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    8. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    9. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    12. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regele, Fabian & Gründl, Helmut, 2021. "Asset concentration risk and insurance solvency regulation," ICIR Working Paper Series 40/21, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    2. E. Kromer & L. Overbeck & K. Zilch, 2016. "Systemic risk measures on general measurable spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 323-357, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludger Overbeck & Florian Schindler, 2021. "Scalar systemic risk measures and Aumann-Shapley allocations," Papers 2112.06534, arXiv.org, revised Jul 2022.
    2. E. Kromer & L. Overbeck & K. Zilch, 2016. "Systemic risk measures on general measurable spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 323-357, October.
    3. Centrone, Francesca & Rosazza Gianin, Emanuela, 2018. "Capital allocation à la Aumann–Shapley for non-differentiable risk measures," European Journal of Operational Research, Elsevier, vol. 267(2), pages 667-675.
    4. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    5. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    6. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    7. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    8. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    9. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera & Thorsten Schmidt, 2019. "Fair Estimation of Capital Risk Allocation," Papers 1902.10044, arXiv.org, revised Nov 2019.
    10. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    11. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    12. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    14. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    15. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    16. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    17. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    18. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
    19. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    20. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.5497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.