IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.3716.html
   My bibliography  Save this paper

The art of probability-of-default curve calibration

Author

Listed:
  • Dirk Tasche

Abstract

PD curve calibration refers to the transformation of a set of rating grade level probabilities of default (PDs) to another average PD level that is determined by a change of the underlying portfolio-wide PD. This paper presents a framework that allows to explore a variety of calibration approaches and the conditions under which they are fit for purpose. We test the approaches discussed by applying them to publicly available datasets of agency rating and default statistics that can be considered typical for the scope of application of the approaches. We show that the popular 'scaled PDs' approach is theoretically questionable and identify an alternative calibration approach ('scaled likelihood ratio') that is both theoretically sound and performs better on the test datasets. Keywords: Probability of default, calibration, likelihood ratio, Bayes' formula, rating profile, binary classification.

Suggested Citation

  • Dirk Tasche, 2012. "The art of probability-of-default curve calibration," Papers 1212.3716, arXiv.org, revised Nov 2013.
  • Handle: RePEc:arx:papers:1212.3716
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.3716
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Tasche, 2009. "Estimating discriminatory power and PD curves when the number of defaults is small," Papers 0905.3928, arXiv.org, revised Mar 2010.
    2. Dirk Tasche, 2006. "Validation of internal rating systems and PD estimates," Papers physics/0606071, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Joseph, 2021. "Predicting Credit Default Probabilities Using Bayesian Statistics and Monte Carlo Simulations," Papers 2108.03389, arXiv.org, revised Sep 2021.
    2. Oliver Blümke, 2020. "Estimating the probability of default for no‐default and low‐default portfolios," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(1), pages 89-107, January.
    3. Dirk Tasche, 2014. "Exact Fit of Simple Finite Mixture Models," JRFM, MDPI, vol. 7(4), pages 1-15, November.
    4. Douw Gerbrand Breed & Jacques Hurter & Mercy Marimo & Matheba Raletjene & Helgard Raubenheimer & Vibhu Tomar & Tanja Verster, 2023. "A Forward-Looking IFRS 9 Methodology, Focussing on the Incorporation of Macroeconomic and Macroprudential Information into Expected Credit Loss Calculation," Risks, MDPI, vol. 11(3), pages 1-16, March.
    5. Brezigar-Masten, Arjana & Masten, Igor & Volk, Matjaž, 2021. "Modelin-g credit risk with a Tobit model of days past due," Journal of Banking & Finance, Elsevier, vol. 122(C).
    6. Joël Bessis, 2009. "Risk Management in Banking," Post-Print hal-00494876, HAL.
    7. Dirk Tasche, 2014. "Exact fit of simple finite mixture models," Papers 1406.6038, arXiv.org, revised Jul 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Tasche, 2012. "Bounds for rating override rates," Papers 1203.2287, arXiv.org, revised Aug 2012.
    2. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    3. Marcin Chlebus, 2014. "One-day prediction of state of turbulence for financial instrument based on models for binary dependent variable," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 37.
    4. Dirk Tasche, 2015. "Fitting a distribution to Value-at-Risk and Expected Shortfall, with an application to covered bonds," Papers 1505.07484, arXiv.org, revised Nov 2015.
    5. Morone, Marco & Cornaglia, Anna, 2010. "An econometric model to quantify benchmark downturn LGD on residential mortgages," MPRA Paper 25588, University Library of Munich, Germany.
    6. François Coppens & Fernando Gonzáles & Gerhard Winkler, 2007. "The performance of credit rating systems in the assessment of collateral used in Eurosystem monetary policy operations," Working Paper Research 118, National Bank of Belgium.
    7. Tasche, Dirk, 2013. "Bayesian estimation of probabilities of default for low default portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 6(3), pages 302-326, July.
    8. M. V. Pomazanov, 2022. "Second-order accuracy metrics for scoring models and their practical use," Papers 2204.07989, arXiv.org, revised Nov 2022.
    9. Patnaik, Ila & Mittal, Shalini & Pandey, Radhika, 2019. "Examining the trade-off between price and financial stability in India," Working Papers 19/248, National Institute of Public Finance and Policy.
    10. Lukasz Prorokowski, 2016. "Rank-order statistics for validating discriminative power of credit risk models," Bank i Kredyt, Narodowy Bank Polski, vol. 47(3), pages 227-250.
    11. Marat Z. Kurbangaleev & Victor A. Lapshin & Zinaida V. Seleznyova, 2018. "Studying The Replicability Of Aggregate External Credit Assessments Using Public Information," HSE Working papers WP BRP 71/FE/2018, National Research University Higher School of Economics.
    12. Rungporn Roengpitya, 2012. "Proposal of New Hybrid PD Estimation Models for the Low Default Portfolios (LDPs), Empirical Comparisons and Policy Implications," Working Papers 2012-03, Monetary Policy Group, Bank of Thailand.
    13. R. John Irwin & Timothy C. Irwin, 2013. "Appraising Credit Ratings: Does The Cap Fit Better Than The Roc?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 18(4), pages 396-408, October.
    14. Nehrebecka Natalia, 2018. "An Evaluation of the Discriminatory Power of Selected Polish Bankruptcy Prediction Models As Part of the Validation Process," Financial Sciences. Nauki o Finansach, Sciendo, vol. 23(4), pages 63-88, December.
    15. Divino, Jose Angelo & Rocha, Líneke Clementino Sleegers, 2013. "Probability of default in collateralized credit operations," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 276-292.
    16. Cornaglia, Anna & Morone, Marco, 2009. "Rating philosophy and dynamic properties of internal rating systems: A general framework and an application to backtesting," MPRA Paper 14711, University Library of Munich, Germany.
    17. Tomislav Grebenar, 2018. "Behavioural Model of Assessment of Probability of Default and the Rating of Non-Financial Corporations," Working Papers 56, The Croatian National Bank, Croatia.
    18. Raffaella Calabrese, 2012. "Improving Classifier Performance Assessment of Credit Scoring Models," Working Papers 201204, Geary Institute, University College Dublin.
    19. Raffaella Calabrese, 2011. "Cost-sensitive classification for rare events: an application to the credit rating model validation for SMEs," Working Papers 201134, Geary Institute, University College Dublin.
    20. Rungporn Roengpitya & Pratabjai Nilla-or, 2012. "Challenges on the Validation of PD Models for Low Default Portfolios (LDPs) and Regulatory Policy Implications," Working Papers 2012-02, Monetary Policy Group, Bank of Thailand.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.3716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.