IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.3164.html
   My bibliography  Save this paper

A Semi-Markov Modulated Interest Rate Model

Author

Listed:
  • Guglielmo D'Amico
  • Raimondo Manca
  • Giovanni Salvi

Abstract

In this paper we propose a semi-Markov modulated model of interest rates. We assume that the switching process is a semi-Markov process with finite state space E and the modulated process is a diffusive process. We derive recursive equations for the higher order moments of the discount factor and we describe a Monte Carlo al- gorithm to execute simulations. The results are specialized to classical models as those by Vasicek, Hull and White and CIR with a semi-Markov modulation.

Suggested Citation

  • Guglielmo D'Amico & Raimondo Manca & Giovanni Salvi, 2012. "A Semi-Markov Modulated Interest Rate Model," Papers 1210.3164, arXiv.org.
  • Handle: RePEc:arx:papers:1210.3164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.3164
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. Hunt, Julien & Devolder, Pierre, 2011. "Semi-Markov regime switching interest rate models and minimal entropy measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3767-3781.
    5. Mamon, Rogemar S., 2002. "A time-varying Markov chain model of term structure," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 309-312, December.
    6. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    7. Fredrik Stenberg & Raimondo Manca & Dmitrii Silvestrov, 2007. "An Algorithmic Approach to Discrete Time Non-homogeneous Backward Semi-Markov Reward Processes with an Application to Disability Insurance," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 497-519, December.
    8. Hunt, Julien & Devolder, Pierre, 2011. "Semi Markov regime switching interest rate models and minimal entropy measure," LIDAM Discussion Papers ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    10. Gordon Pye, 1966. "A Markov Model of the Term Structure," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 80(1), pages 60-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amico, Guglielmo & Manca, Raimondo & Salvi, Giovanni, 2013. "A semi-Markov modulated interest rate model," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2094-2102.
    2. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.
    3. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    6. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    7. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    11. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    12. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    13. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    14. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    17. Jiazi Chen & Zhiwu Hong & Linlin Niu, 2022. "Forecasting Interest Rates with Shifting Endpoints: The Role of the Demographic Age Structure," Working Papers 2022-06-25, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    18. repec:wyi:journl:002108 is not listed on IDEAS
    19. repec:uts:finphd:41 is not listed on IDEAS
    20. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    21. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    22. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.3164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.