IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1209.2298.html
   My bibliography  Save this paper

The Future Has Thicker Tails than the Past: Model Error As Branching Counterfactuals

Author

Listed:
  • Nassim N. Taleb

Abstract

Ex ante forecast outcomes should be interpreted as counterfactuals (potential histories), with errors as the spread between outcomes. Reapplying measurements of uncertainty about the estimation errors of the estimation errors of an estimation leads to branching counterfactuals. Such recursions of epistemic uncertainty have markedly different distributial properties from conventional sampling error. Nested counterfactuals of error rates invariably lead to fat tails, regardless of the probability distribution used, and to powerlaws under some conditions. A mere .01% branching error rate about the STD (itself an error rate), and .01% branching error rate about that error rate, etc. (recursing all the way) results in explosive (and infinite) higher moments than 1. Missing any degree of regress leads to the underestimation of small probabilities and concave payoffs (a standard example of which is Fukushima). The paper states the conditions under which higher order rates of uncertainty (expressed in spreads of counterfactuals) alters the shapes the of final distribution and shows which a priori beliefs about conterfactuals are needed to accept the reliability of conventional probabilistic methods (thin tails or mildly fat tails).

Suggested Citation

  • Nassim N. Taleb, 2012. "The Future Has Thicker Tails than the Past: Model Error As Branching Counterfactuals," Papers 1209.2298, arXiv.org.
  • Handle: RePEc:arx:papers:1209.2298
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1209.2298
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. N. Taleb & R. Douady, 2013. "Mathematical definition, mapping, and detection of (anti)fragility," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1677-1689, November.
    2. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    3. Taleb, Nassim N. & Tapiero, Charles S., 2010. "Risk externalities and too big to fail," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3503-3507.
    4. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    5. Ahmad Hajihasani & Ali Namaki & Nazanin Asadi & Reza Tehrani, 2020. "Non-Extensive Value-at-Risk Estimation During Times of Crisis," Papers 2005.09036, arXiv.org, revised Jan 2021.
    6. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.2298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.