IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.1782.html
   My bibliography  Save this paper

A Note on the Equivalence between the Normal and the Lognormal Implied Volatility : A Model Free Approach

Author

Listed:
  • Cyril Grunspan

Abstract

First, we show that implied normal volatility is intimately linked with the incomplete Gamma function. Then, we deduce an expansion on implied normal volatility in terms of the time-value of a European call option. Then, we formulate an equivalence between the implied normal volatility and the lognormal implied volatility with any strike and any model. This generalizes a known result for the SABR model. Finally, we adress the issue of the "breakeven move" of a delta-hedged portfolio.

Suggested Citation

  • Cyril Grunspan, 2011. "A Note on the Equivalence between the Normal and the Lognormal Implied Volatility : A Model Free Approach," Papers 1112.1782, arXiv.org.
  • Handle: RePEc:arx:papers:1112.1782
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.1782
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cyril Grunspan, 2011. "Asymptotic Expansions of the Lognormal Implied Volatility : A Model Free Approach," Papers 1112.1652, arXiv.org.
    2. Jaehyuk Choi & Kwangmoon Kim & Minsuk Kwak, 2009. "Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 261-268.
    3. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    4. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    5. Jörg Kienitz & Manuel Wittke, 2010. "Option Valuation in Multivariate SABR Models," Research Paper Series 272, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Walter Schachermayer & Josef Teichmann, 2008. "How Close Are The Option Pricing Formulas Of Bachelier And Black–Merton–Scholes?," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 155-170, January.
    7. Viorel Costeanu & Dan Pirjol, 2011. "Asymptotic Expansion for the Normal Implied Volatility in Local Volatility Models," Papers 1105.3359, arXiv.org.
    8. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    2. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2021. "A Black-Scholes user's guide to the Bachelier model," Papers 2104.08686, arXiv.org, revised Feb 2022.
    3. Cyril Grunspan & Joris van der Hoeven, 2020. "Effective asymptotic analysis for finance," Post-Print hal-01573621, HAL.
    4. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    5. Christian Bayer & Juho Happola & Ra'ul Tempone, 2017. "Implied Stopping Rules for American Basket Options from Markovian Projection," Papers 1705.00558, arXiv.org, revised Jun 2017.
    6. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.
    7. Kevin Patrick Darby, 2021. "Time is Money: The Equilibrium Trading Horizon and Optimal Arrival Price," Papers 2104.05844, arXiv.org.
    8. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.
    2. Roza Galeeva & Ehud Ronn, 2022. "Oil futures volatility smiles in 2020: Why the bachelier smile is flatter," Review of Derivatives Research, Springer, vol. 25(2), pages 173-187, July.
    3. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    4. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    7. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    8. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    9. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    10. Aleksandar Mijatovi'c & Peter Tankov, 2012. "A new look at short-term implied volatility in asset price models with jumps," Papers 1207.0843, arXiv.org, revised Jul 2012.
    11. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    12. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    13. Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
    14. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    15. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    16. Vimal Raval & Antoine Jacquier, 2021. "The Log Moment formula for implied volatility," Papers 2101.08145, arXiv.org.
    17. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    18. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.
    19. J. D. Deuschel & P. K. Friz & A. Jacquier & S. Violante, 2011. "Marginal density expansions for diffusions and stochastic volatility, part I: Theoretical Foundations," Papers 1111.2462, arXiv.org, revised May 2013.
    20. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.1782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.