IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.1114.html
   My bibliography  Save this paper

The Nature of Alpha

Author

Listed:
  • Arthur M. Berd

Abstract

We suggest an empirical model of investment strategy returns which elucidates the importance of non-Gaussian features, such as time-varying volatility, asymmetry and fat tails, in explaining the level of expected returns. Estimating the model on the (former) Lehman Brothers Hedge Fund Index data, we demonstrate that the volatility compensation is a significant component of the expected returns for most strategy styles, suggesting that many of these strategies should be thought of as being `short vol'. We present some fundamental and technical reasons why this should indeed be the case, and suggest explanation for exception cases exhibiting `long vol' characteristics. We conclude by drawing some lessons for hedge fund portfolio construction.

Suggested Citation

  • Arthur M. Berd, 2011. "The Nature of Alpha," Papers 1112.1114, arXiv.org.
  • Handle: RePEc:arx:papers:1112.1114
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.1114
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Fung, William & Hsieh, David A, 2001. "The Risk in Hedge Fund Strategies: Theory and Evidence from Trend Followers," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 313-341.
    3. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    4. Drost, F.C. & Nijman, T.E., 1994. "Temporal aggregation of GARCH processes," Other publications TiSEM b6718003-2fa5-43bb-a690-d, Tilburg University, School of Economics and Management.
    5. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Glosten, L. R. & Jagannathan, R., 1994. "A contingent claim approach to performance evaluation," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 133-160, January.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Fung, William & Hsieh, David A, 1997. "Empirical Characteristics of Dynamic Trading Strategies: The Case of Hedge Funds," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 275-302.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    4. Vrontos, Spyridon D. & Vrontos, Ioannis D. & Giamouridis, Daniel, 2008. "Hedge fund pricing and model uncertainty," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 741-753, May.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    7. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    8. Arthur Berd & Robert Engle & Artem Voronov, . "The underlying dynamics of credit correlations," Journal of Credit Risk, Journal of Credit Risk.
    9. A. B. M. Rabiul Alam Beg & Sajid Anwar, 2014. "Detecting volatility persistence in GARCH models in the presence of the leverage effect," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2205-2213, December.
    10. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    11. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    12. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    15. Benjamin Beckers & Helmut Herwartz & Moritz Seidel, 2017. "Risk forecasting in (T)GARCH models with uncorrelated dependent innovations," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 121-137, January.
    16. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
    17. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    18. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).
    19. Koundouri, Phoebe & Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2015. "Factor Models as "Explanatory UniÖers" versus "Explanatory Ideals" of Empirical Regularities of Stock Returns," MPRA Paper 122254, University Library of Munich, Germany.
    20. David Mcmillan & Alan Speight, 1998. "Asymmetric volatility in industrial production: some international evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 5(6), pages 375-381.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.1114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.