Currency Forecasting using Multiple Kernel Learning with Financially Motivated Features
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fernando Perez-cruz & Julio Afonso-rodriguez & Javier Giner, 2003. "Estimating GARCH models using support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 163-172.
- Stephan K. Chalup & Andreas Mitschele, 2008. "Kernel Methods in Finance," International Handbooks on Information Systems, in: Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), Handbook on Information Technology in Finance, chapter 27, pages 655-687, Springer.
- Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
- Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
- Christian Ullrich, 2009. "Forecasting and Hedging in the Foreign Exchange Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00495-7, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tristan Fletcher & John Shawe-Taylor, 2013. "Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 217-240, August.
- Jasleen Kaur & Khushdeep Dharni, 2022. "Application and performance of data mining techniques in stock market: A review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 219-241, October.
- Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010.
"Estimating the Market Share Attraction Model using Support Vector Regressions,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
- Nalbantov, G.I. & Franses, Ph.H.B.F. & Bioch, J.C. & Groenen, P.J.F., 2007. "Estimating the market share attraction model using support vector regressions," Econometric Institute Research Papers EI 2007-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Xuekui Zhang & Yuying Huang & Ke Xu & Li Xing, 2023. "Novel modelling strategies for high-frequency stock trading data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
- Guillermo Santamaría-Bonfil & Juan Frausto-Solís & Ignacio Vázquez-Rodarte, 2015. "Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 111-133, January.
- Nawaf Almaskati, 2022. "Machine learning in finance: Major applications, issues, metrics, and future trends," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-32, September.
- Andrey Zahariev & Mikhail Zveryаkov & Stoyan Prodanov & Galina Zaharieva & Petko Angelov & Silvia Zarkova & Mariana Petrova, 2020. "Debt management evaluation through Support Vector Machines: on the example of Italy and Greece," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2382-2393, March.
- Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
- Ślepaczuk Robert & Zenkova Maryna, 2018.
"Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market,"
Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
- Maryna Zenkova & Robert Ślepaczuk, 2019. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Working Papers 2019-02, Faculty of Economic Sciences, University of Warsaw.
- Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
- Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
- Piotr Fiszeder & Witold Orzeszko, 2012. "Nonparametric Verification of GARCH-Class Models for Selected Polish Exchange Rates and Stock Indices," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(5), pages 430-449, November.
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
- Jing Yang & Nikola Gradojevic, 2006. "Non-linear, non-parametric, non-fundamental exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 227-245.
- repec:hum:wpaper:sfb649dp2008-051 is not listed on IDEAS
- Shusheng Ding & Tianxiang Cui & Yongmin Zhang & Jiawei Li, 2021. "Liquidity effects on oil volatility forecasting: From fintech perspective," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
- Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
- Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
- Kim Karlsson, Hyunjoo & Li, Yushu, 2024. "Investigation of Swedish krona exchange rate volatility by APARCH-Support Vector Regression," Working Papers in Economics and Statistics 10/2024, Linnaeus University, School of Business and Economics, Department of Economics and Statistics.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2010-12-11 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.6097. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.