IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260289.html
   My bibliography  Save this article

Liquidity effects on oil volatility forecasting: From fintech perspective

Author

Listed:
  • Shusheng Ding
  • Tianxiang Cui
  • Yongmin Zhang
  • Jiawei Li

Abstract

Fin-tech is an emerging field, inspiring revolutionary innovations in the financial field. It may initiate the evolutionary episode of the financial research, where volatility forecasting is a crucial topic in finance. For forecasting volatility, GARCH model is a prevailing model, however, further improvement of the GARCH model is still challenging. In this paper, we demonstrate how Fintech can play a part in volatility forecasting by employing a metaheuristic procedure called Genetic Programming. On the basis, we are able to develop a new volatility forecasting model, which can beat GARCH family models (including GARCH, IGARCH and TGARCH models) in a significant way. Since genetic programming is an evolutionary algorithm based on the principles of natural selection, this innovative work will be a breakthrough point in the financial area. The innovation of this paper demonstrates how GP technology can be applied in the financial field, attempting to explore the volatility forecasting area from the combination of new technology and finance, known as fintech. More importantly, when the formula of volatility forecasting is unknown as we introduce a new factor, namely, the liquidity factor, we unveil that how GP method can be helpful in determining the specific volatility forecasting model format. We thereby exhibit the liquidity effects on volatility forecasting filed from the fintech perspective.

Suggested Citation

  • Shusheng Ding & Tianxiang Cui & Yongmin Zhang & Jiawei Li, 2021. "Liquidity effects on oil volatility forecasting: From fintech perspective," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0260289
    DOI: 10.1371/journal.pone.0260289
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260289
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260289&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernando Perez-cruz & Julio Afonso-rodriguez & Javier Giner, 2003. "Estimating GARCH models using support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 163-172.
    2. Pierre Collin‐Dufresne & Vyacheslav Fos, 2016. "Insider Trading, Stochastic Liquidity, and Equilibrium Prices," Econometrica, Econometric Society, vol. 84(4), pages 1441-1475, July.
    3. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
    4. Alexandre Pimenta & Ciniro A. L. Nametala & Frederico G. Guimarães & Eduardo G. Carrano, 2018. "An Automated Investing Method for Stock Market Based on Multiobjective Genetic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 125-144, June.
    5. Mark A Chen & Qinxi Wu & Baozhong Yang, 2019. "How Valuable Is FinTech Innovation?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 2062-2106.
    6. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2012. "Commodity Liquidity Measurement and Transaction Costs," The Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 599-638.
    7. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    8. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    9. Pierre Collin‐Dufresne & Vyacheslav Fos, 2016. "Insider Trading, Stochastic Liquidity, and Equilibrium Prices," Econometrica, Econometric Society, vol. 84, pages 1441-1475, July.
    10. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    11. Geman, Hélyette & Kharoubi, Cécile, 2008. "WTI crude oil Futures in portfolio diversification: The time-to-maturity effect," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2553-2559, December.
    12. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    13. Libo Yin, 2016. "Does oil price respond to macroeconomic uncertainty? New evidence," Empirical Economics, Springer, vol. 51(3), pages 921-938, November.
    14. Bollerslev, Tim & Melvin, Michael, 1994. "Bid--ask spreads and volatility in the foreign exchange market : An empirical analysis," Journal of International Economics, Elsevier, vol. 36(3-4), pages 355-372, May.
    15. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    16. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    17. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    18. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    19. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    20. Michael J. Fleming & Eli M. Remolona, 1999. "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," Journal of Finance, American Finance Association, vol. 54(5), pages 1901-1915, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    2. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    3. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    4. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    5. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    6. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    7. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    9. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    10. Haugom, Erik & Ray, Rina, 2017. "Heterogeneous traders, liquidity, and volatility in crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 36-49.
    11. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    14. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    15. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    16. Sabbaghi, Omid & Sabbaghi, Navid, 2011. "Carbon Financial Instruments, thin trading, and volatility: Evidence from the Chicago Climate Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 399-407.
    17. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    18. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    19. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    20. Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017. "Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets," Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.