IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1010.0829.html
   My bibliography  Save this paper

Information-based models for finance and insurance

Author

Listed:
  • Edward Hoyle

Abstract

In financial markets, the information that traders have about an asset is reflected in its price. The arrival of new information then leads to price changes. The `information-based framework' of Brody, Hughston and Macrina (BHM) isolates the emergence of information, and examines its role as a driver of price dynamics. This approach has led to the development of new models that capture a broad range of price behaviour. This thesis extends the work of BHM by introducing a wider class of processes for the generation of the market filtration. In the BHM framework, each asset is associated with a collection of random cash flows. The asset price is the sum of the discounted expectations of the cash flows. Expectations are taken with respect (i) an appropriate measure, and (ii) the filtration generated by a set of so-called information processes that carry noisy or imperfect market information about the cash flows. To model the flow of information, we introduce a class of processes termed L\'evy random bridges (LRBs), generalising the Brownian and gamma information processes of BHM. Conditioned on its terminal value, an LRB is identical in law to a L\'evy bridge. We consider in detail the case where the asset generates a single cash flow $X_T$ at a fixed date $T$. The flow of information about $X_T$ is modelled by an LRB with random terminal value $X_T$. An explicit expression for the price process is found by working out the discounted conditional expectation of $X_T$ with respect to the natural filtration of the LRB. New models are constructed using information processes related to the Poisson process, the Cauchy process, the stable-1/2 subordinator, the variance-gamma process, and the normal inverse-Gaussian process. These are applied to the valuation of credit-risky bonds, vanilla and exotic options, and non-life insurance liabilities.

Suggested Citation

  • Edward Hoyle, 2010. "Information-based models for finance and insurance," Papers 1010.0829, arXiv.org.
  • Handle: RePEc:arx:papers:1010.0829
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1010.0829
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    2. George Bouzianis & Lane P. Hughston & Leandro S'anchez-Betancourt, 2022. "Information-Based Trading," Papers 2201.08875, arXiv.org, revised Jan 2024.
    3. Lane P. Hughston & Leandro S'anchez-Betancourt, 2020. "Pricing with Variance Gamma Information," Papers 2003.07967, arXiv.org, revised Sep 2020.
    4. 'Alvaro Cartea & Sebastian Jaimungal & Leandro S'anchez-Betancourt, 2019. "Latency and Liquidity Risk," Papers 1908.03281, arXiv.org.
    5. Edward Hoyle & Levent Ali Menguturk, 2011. "Archimedean Survival Processes," Papers 1106.2342, arXiv.org, revised Sep 2012.
    6. Iachan, Felipe S. & Silva, Dejanir & Zi, Chao, 2022. "Under-diversification and idiosyncratic risk externalities," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1227-1250.
    7. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    8. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    9. Lane P. Hughston & Leandro Sánchez-Betancourt, 2020. "Pricing with Variance Gamma Information," Risks, MDPI, vol. 8(4), pages 1-22, October.
    10. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.0829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.