IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0812.4050.html
   My bibliography  Save this paper

On three filtering problems arising in mathematical finance

Author

Listed:
  • Damiano Brigo
  • Bernard Hanzon

Abstract

Three situations in which filtering theory is used in mathematical finance are illustrated at different levels of detail. The three problems originate from the following different works: 1) On estimating the stochastic volatility model from observed bilateral exchange rate news, by R. Mahieu, and P. Schotman; 2) A state space approach to estimate multi-factors CIR models of the term structure of interest rates, by A.L.J. Geyer, and S. Pichler; 3) Risk-minimizing hedging strategies under partial observation in pricing financial derivatives, by P. Fischer, E. Platen, and W. J. Runggaldier; In the first problem we propose to use a recent nonlinear filtering technique based on geometry to estimate the volatility time series from observed bilateral exchange rates. The model used here is the stochastic volatility model. The filters that we propose are known as projection filters, and a brief derivation of such filters is given. The second problem is introduced in detail, and a possible use of different filtering techniques is hinted at. In fact the filters used for this problem in 2) and part of the literature can be interpreted as projection filters and we will make some remarks on how more general and possibly more suitable projection filters can be constructed. The third problem is only presented shortly.

Suggested Citation

  • Damiano Brigo & Bernard Hanzon, 2008. "On three filtering problems arising in mathematical finance," Papers 0812.4050, arXiv.org.
  • Handle: RePEc:arx:papers:0812.4050
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0812.4050
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanzon, B. & Hut, R., 1991. "New results on the projection filter," Serie Research Memoranda 0023, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    4. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
    5. Martin Schweizer, 1994. "Risk‐Minimizing Hedging Strategies Under Restricted Information," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 327-342, October.
    6. Geyer, Alois L J & Pichler, Stefan, 1999. "A State-Space Approach to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term Structure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 22(1), pages 107-130, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brigo, Damiano & Hanzon, Bernard, 1998. "On some filtering problems arising in mathematical finance," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 53-64, May.
    2. Salima El Kolei, 2013. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 1031-1081, November.
    3. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    4. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    5. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    6. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    7. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    8. Salima El Kolei, 2012. "Parametric estimation of hidden stochastic model by contrast minimization and deconvolution: application to the Stochastic Volatility Model," Papers 1202.2559, arXiv.org, revised Mar 2013.
    9. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    10. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
    11. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    12. Sandmann, G. & Koopman, Siem, 1996. "Maximum likelihood estimation of stochastic volatility models," LSE Research Online Documents on Economics 119161, London School of Economics and Political Science, LSE Library.
    13. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    14. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    15. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    18. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    19. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0812.4050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.