IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0804.0482.html
   My bibliography  Save this paper

An introduction to L\'{e}vy processes with applications in finance

Author

Listed:
  • Antonis Papapantoleon

Abstract

These lectures notes aim at introducing L\'{e}vy processes in an informal and intuitive way, accessible to non-specialists in the field. In the first part, we focus on the theory of L\'{e}vy processes. We analyze a `toy' example of a L\'{e}vy process, viz. a L\'{e}vy jump-diffusion, which yet offers significant insight into the distributional and path structure of a L\'{e}vy process. Then, we present several important results about L\'{e}vy processes, such as infinite divisibility and the L\'{e}vy-Khintchine formula, the L\'{e}vy-It\^{o} decomposition, the It\^{o} formula for L\'{e}vy processes and Girsanov's transformation. Some (sketches of) proofs are presented, still the majority of proofs is omitted and the reader is referred to textbooks instead. In the second part, we turn our attention to the applications of L\'{e}vy processes in financial modeling and option pricing. We discuss how the price process of an asset can be modeled using L\'{e}vy processes and give a brief account of market incompleteness. Popular models in the literature are presented and revisited from the point of view of L\'{e}vy processes, and we also discuss three methods for pricing financial derivatives. Finally, some indicative evidence from applications to market data is presented.

Suggested Citation

  • Antonis Papapantoleon, 2008. "An introduction to L\'{e}vy processes with applications in finance," Papers 0804.0482, arXiv.org, revised Nov 2008.
  • Handle: RePEc:arx:papers:0804.0482
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0804.0482
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Ernst Eberlein & Antonis Papapantoleon & Albert Shiryaev, 2008. "On the duality principle in option pricing: semimartingale setting," Finance and Stochastics, Springer, vol. 12(2), pages 265-292, April.
    3. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Esche, Felix & Schweizer, Martin, 2005. "Minimal entropy preserves the Lévy property: how and why," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 299-327, February.
    8. Ernst Eberlein & Jean Jacod, 1997. "On the range of options prices (*)," Finance and Stochastics, Springer, vol. 1(2), pages 131-140.
    9. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    10. Ole E. Barndorff-Nielsen & Karsten Prause, 2001. "Apparent scaling," Finance and Stochastics, Springer, vol. 5(1), pages 103-113.
    11. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    12. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R.L. Gudmundarson & M. Guerra & A. B. de Moura, 2021. "Minimizing Ruin Probability Under Dependencies for Insurance Pricing," Working Papers REM 2021/0193, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    3. Xin Liu, 2016. "Asset Pricing with Random Volatility," Papers 1610.01450, arXiv.org, revised Sep 2018.
    4. A. Itkin & V. Shcherbakov & A. Veygman, 2019. "New Model For Pricing Quanto Credit Default Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-37, May.
    5. A. Itkin & V. Shcherbakov & A. Veygman, 2017. "Influence of jump-at-default in IR and FX on Quanto CDS prices," Papers 1711.07133, arXiv.org.
    6. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    7. Watson, John G. & Scott, Jason S., 2014. "Ratchet consumption over finite and infinite planning horizons," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 84-96.
    8. Jan-Christian Gerlach & Jerome Kreuser & Didier Sornette, 2020. "Awareness of crash risk improves Kelly strategies in simulated financial time series," Papers 2004.09368, arXiv.org.
    9. Adam D. Bull, 2014. "Near-optimal estimation of jump activity in semimartingales," Papers 1409.8150, arXiv.org, revised Jan 2016.
    10. Kakushadze, Zura, 2017. "Volatility smile as relativistic effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 59-76.
    11. D. J. Manuge, 2015. "L\'evy Processes For Finance: An Introduction In R," Papers 1503.03902, arXiv.org.
    12. Ragnar Levy Gudmundarson & Manuel Guerra & Alexandra Bugalho de Moura, 2021. "Minimizing ruin probability under dependencies for insurance pricing," Papers 2108.10075, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    2. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    4. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    5. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    6. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    7. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    8. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    9. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    10. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    11. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    12. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    13. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    14. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    16. Kleinert, Hagen, 2002. "Option pricing from path integral for non-Gaussian fluctuations. Natural martingale and application to truncated Lèvy distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 217-242.
    17. Alvaro Cartea, 2005. "Dynamic Hedging of Financial Instruments When the Underlying Follows a Non-Gaussian Process," Birkbeck Working Papers in Economics and Finance 0508, Birkbeck, Department of Economics, Mathematics & Statistics.
    18. Tim Leung & Marco Santoli, 2014. "Accounting for earnings announcements in the pricing of equity options," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-46.
    19. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    20. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0804.0482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.