IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0708.1627.html
   My bibliography  Save this paper

Rearranging Edgeworth-Cornish-Fisher Expansions

Author

Listed:
  • Victor Chernozhukov
  • Ivan Fernandez-Val
  • Alfred Galichon

Abstract

This paper applies a regularization procedure called increasing rearrangement to monotonize Edgeworth and Cornish-Fisher expansions and any other related approximations of distribution and quantile functions of sample statistics. Besides satisfying the logical monotonicity, required of distribution and quantile functions, the procedure often delivers strikingly better approximations to the distribution and quantile functions of the sample mean than the original Edgeworth-Cornish-Fisher expansions.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Rearranging Edgeworth-Cornish-Fisher Expansions," Papers 0708.1627, arXiv.org, revised May 2013.
  • Handle: RePEc:arx:papers:0708.1627
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0708.1627
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935, Elsevier.
    2. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    3. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Improving Estimates Of Monotone Functions By Rearrangement," Boston University - Department of Economics - Working Papers Series WP2007-012, Boston University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Wing Yan & Li, Xiaolong & Liu, Fangda & Shi, Yifan & Yam, Sheung Chi Phillip, 2021. "A Fourier-cosine method for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 256-267.
    2. Candelon, Bertrand & Fuerst, Franz & Hasse, Jean-Baptiste, 2021. "Diversification potential in real estate portfolios," International Economics, Elsevier, vol. 166(C), pages 126-139.
    3. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    4. Ghossoub, Mario, 2011. "Monotone equimeasurable rearrangements with non-additive probabilities," MPRA Paper 37629, University Library of Munich, Germany, revised 23 Mar 2012.
    5. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Posterior moments and quantiles for the normal location model with Laplace prior," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4039-4049, August.
    6. Victor Chernozhukov & Pierre-André Chiappori & Marc Henry, 2010. "Introduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(2), pages 271-273, February.
    7. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    8. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Jean-Luc Prigent & Donald Keenan & Mahdi Mokrane, 2017. "Modified Sharpe Ratios in Real Estate Performance Measurement: Beyond the Standard Cornish Fisher Expansion," THEMA Working Papers 2017-20, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Donald Keenan, 2015. "Cornish-Fisher Expansion for Commercial Real Estate Value at Risk," The Journal of Real Estate Finance and Economics, Springer, vol. 50(4), pages 439-464, May.
    10. Liu, Nianqing & Vuong, Quang & Xu, Haiqing, 2017. "Rationalization and identification of binary games with correlated types," Journal of Econometrics, Elsevier, vol. 201(2), pages 249-268.
    11. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.
    12. Brenda Castillo-Brais & Ángel León & Juan Mora, 2022. "Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    13. Charles-Olivier Amedee-Manesme & Fabrice Barthélémy, 2012. "Cornish-Fisher expansion for real estate value at risk," ERES eres2012_044, European Real Estate Society (ERES).
    14. Carnero, M. Angeles & León, Angel & Ñíguez, Trino-Manuel, 2023. "Skewness in energy returns: estimation, testing and retain-->implications for tail risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 178-189.
    15. Stéphane Hamayon & Florence Legros & Pradat Yannick, 2016. "Non gaussian returns: which impact on default options retirement plans? [Distribution non gaussienne des rendements : quel impact sur les options par défaut des plans d'épargne retraite ?]," Working Papers hal-03003588, HAL.
    16. Karlygash Kurlbayeva & Samuel Malone, 2012. "The determinants of extreme commodity prices," OxCarre Working Papers 096, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    17. Donald Lien & Christopher Stroud & Keying Ye, 2013. "Comparing VaR Approximation Methods Which Use the First Four Moments as Inputs," Working Papers 0220mss, College of Business, University of Texas at San Antonio.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    2. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    3. Zhijie Xiao & Peter C.B. Phillips, 1998. "Higher Order Approximations for Wald Statistics in Cointegrating Regressions," Cowles Foundation Discussion Papers 1192, Cowles Foundation for Research in Economics, Yale University.
    4. Lucia Rizzica, 2018. "When the Cat’s Away The Effects of Spousal Migration on Investments on Children," The World Bank Economic Review, World Bank, vol. 32(1), pages 85-108.
    5. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    6. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    7. Carriero, Andrea & Kapetanios, George & Marcellino, Massilimiano, 2015. "A Shrinkage Instrumental Variable Estimator For Large Datasets," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 67-87, Mars-Juin.
    8. Fendel Tanja, 2016. "Migration and Regional Wage Disparities in Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(1), pages 3-35, February.
    9. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    10. Ba Chu, 2012. "Approximation of Asymmetric Multivariate Return Distributions," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(3), pages 293-318, September.
    11. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    12. Stépahne Auray & Nicolas Lepage-Saucier & Purevdorj Tuvaandor, 2018. "Doubly Robust GMM Inference and Differentiated Products Demand Models," Working Papers 2018-13, Center for Research in Economics and Statistics.
    13. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    14. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    15. Jinyong Hahn & David W. Hughes & Guido Kuersteiner & Whitney K. Newey, 2024. "Efficient bias correction for cross‐section and panel data," Quantitative Economics, Econometric Society, vol. 15(3), pages 783-816, July.
    16. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    17. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    18. Matthew J. Notowidigdo, 2020. "The Incidence of Local Labor Demand Shocks," Journal of Labor Economics, University of Chicago Press, vol. 38(3), pages 687-725.
    19. John Creedy, 2021. "Francis Ysidro Edgeworth (1845–1926)," Springer Books, in: Robert A. Cord (ed.), The Palgrave Companion to Oxford Economics, edition 1, chapter 11, pages 257-282, Springer.
    20. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.

    More about this item

    JEL classification:

    • D10 - Microeconomics - - Household Behavior - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0708.1627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.