IDEAS home Printed from https://ideas.repec.org/p/apc/wpaper/197.html
   My bibliography  Save this paper

GDP nowcasting with Machine Learning and Unstructured Data to Peru

Author

Listed:
  • Juan Tenorio
  • Wilder Pérez

Abstract

In a context of ongoing change, “nowcasting” models based on Machine Learning (ML) algorithms deliver a noteworthy advantage for decision-making in both the public and private sectors due to its flexibility and ability to drive large amounts of data. This document presents projection models for the monthly GDP rate growth of Peru, which incorporate structured macroeconomic indicators with high-frequency unstructured sentiment variables. The window sampling comes from January 2007 to May 2023, including a total of 91 variables. By assessing six ML algorithms, the best predictors for each model were identified. The results reveal the high capacity of each ML model with unstructured data to provide more accurate and anticipated predictions than traditional time series models, where the outstanding models were Gradient Boosting Machine, LASSO, and Elastic Net, which achieved a prediction error reduction of 20% to 25% compared to the AR and Dynamic Factor Models (DFM) models. These results could be influenced by the analysis period, which includes crisis events featured by high uncertainty, where ML models with unstructured data improve significance.

Suggested Citation

  • Juan Tenorio & Wilder Pérez, 2023. "GDP nowcasting with Machine Learning and Unstructured Data to Peru," Working Papers 197, Peruvian Economic Association.
  • Handle: RePEc:apc:wpaper:197
    as

    Download full text from publisher

    File URL: https://perueconomics.org/wp-content/uploads/2023/11/WP-197.pdf
    File Function: Application/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mr. Andrew J Tiffin, 2016. "Seeing in the Dark: A Machine-Learning Approach to Nowcasting in Lebanon," IMF Working Papers 2016/056, International Monetary Fund.
    2. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    3. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    4. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    2. Pérez, Fernando, 2018. "Nowcasting Peruvian GDP using Leading Indicators and Bayesian Variable Selection," Working Papers 2018-010, Banco Central de Reserva del Perú.
    3. Carlos León & Fabio Ortega, 2018. "Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach," Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
    4. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    5. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    6. Deicy J. Cristiano & Manuel D. Hernández & José David Pulido, 2012. "Pronósticos de corto plazo en tiempo real para la actividad económica colombiana," Borradores de Economia 724, Banco de la Republica de Colombia.
    7. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    8. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    9. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    10. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    11. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    12. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    13. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    14. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    15. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    16. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    17. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    18. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    19. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    20. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.

    More about this item

    Keywords

    nowcasting; machine learning; GDP growth;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apc:wpaper:197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nelson Ramírez-Rondán (email available below). General contact details of provider: https://edirc.repec.org/data/peruvea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.