IDEAS home Printed from https://ideas.repec.org/p/ams/ndfwpp/10-11.html
   My bibliography  Save this paper

Competing Recombinant Technologies for Environmental Innovation: Extending Arthur’s Model of Lock-in Abstract: This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of Arthur (1989). This allows us to evaluate if and how an economy locked into a dirty technology can be unlocked and move towards the clean technology. The main extension involves the inclusion of the effect of recombinant innovation of the two technologies. A mechanism of endogenous competition is described involving a positive externality of increasing returns to investment which are counterbalanced by recombinant innovation. We determine conditions under which lock-in can be avoided or escaped. A second extension is “symmetry breaking†of the system due to the introduction of an environmental policy that charges a price for polluting. A final extension adds a cost of environmental policy in the form of lower returns on investment implemented through a growth-depressing factor. We compare cumulative pollution under different scenarios, so that we can evaluate the combination of environmental regulation and recombinant innovation

Author

Listed:
  • Van den Bergh, J.C.J.M.
  • Zeppini Rossi, P.

    (University of Amsterdam)

Abstract

No abstract is available for this item.

Suggested Citation

  • Van den Bergh, J.C.J.M. & Zeppini Rossi, P., 2010. "Competing Recombinant Technologies for Environmental Innovation: Extending Arthur’s Model of Lock-in Abstract: This article presents a model of sequential decisions about investments in environmenta," CeNDEF Working Papers 10-11, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  • Handle: RePEc:ams:ndfwpp:10-11
    as

    Download full text from publisher

    File URL: http://cendef.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/amsterdam-school-of-economics-research-institute/cendef/working-papers-2010/competing---zeppini-vandenbergh2b.pdf?1363342473307
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeppini, Paolo & van den Bergh, Jeroen C.J.M., 2013. "Optimal diversity in investments with recombinant innovation," Structural Change and Economic Dynamics, Elsevier, vol. 24(C), pages 141-156.
    2. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    3. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    4. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Zeppini & Jeroen C.J.M. van den Bergh, 2010. "Competing Recombinant Technologies for Environmental Innovation," Tinbergen Institute Discussion Papers 10-107/1, Tinbergen Institute.
    2. Deniz Erdemlioglu & Nikola Gradojevic, 2021. "Heterogeneous investment horizons, risk regimes, and realized jumps," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 617-643, January.
    3. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    4. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    5. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.
    6. Cees Diks & Cars Hommes & Valentyn Panchenko & Roy Weide, 2008. "E&F Chaos: A User Friendly Software Package for Nonlinear Economic Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 221-244, September.
    7. Serena Brianzoni & Roy Cerqueti & Elisabetta Michetti, 2010. "A Dynamic Stochastic Model of Asset Pricing with Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 165-188, February.
    8. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    9. Yamamoto, Ryuichi & Hirata, Hideaki, 2013. "Strategy switching in the Japanese stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 2010-2022.
    10. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    11. Pascal Seppecher & Isabelle Salle & Dany Lang, 2019. "Is the market really a good teacher?," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 299-335, March.
    12. Daniele Giachini, 2018. "Rationality and Asset Prices under Belief Heterogeneity," LEM Papers Series 2018/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Chueh-Yung Tsao & Ya-Chi Huang, 2018. "Revisiting the issue of survivability and market efficiency with the Santa Fe Artificial Stock Market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 537-560, October.
    14. Moulet, Sonia & Rouchier, Juliette, 2008. "The influence of seller learning and time constraints on sequential bargaining in an artificial perishable goods market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2322-2348, July.
    15. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    16. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    17. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    18. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    19. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    20. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ams:ndfwpp:10-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cees C.G. Diks (email available below). General contact details of provider: https://edirc.repec.org/data/cnuvanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.