IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2023027.html
   My bibliography  Save this paper

Dynamic Autoregressive Liquidity (DArLiQ)

Author

Listed:
  • Hafner, Christian M.

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Linton, Oliver B.
  • Wang, Linqi

Abstract

We introduce a new class of semiparametric dynamic autoregressive models for the Amihud illiquidity measure, which captures both the long-run trend in the illiquidity series with a nonparametric component and the short-run dynamics with an autoregressive component. We develop a generalized method of moments (GMM) estimator based on conditional moment restrictions and an efficient semiparametric maximum likelihood (ML) estimator based on an iid assumption. We derive large sample properties for our estimators. Finally, we demonstrate the model fitting performance and its empirical relevance on an application. We investigate how the different components of the illiquidity process obtained from our model relate to the stock market risk premium using data on the S&P 500 stock market index.

Suggested Citation

  • Hafner, Christian M. & Linton, Oliver B. & Wang, Linqi, 2023. "Dynamic Autoregressive Liquidity (DArLiQ)," LIDAM Reprints ISBA 2023027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2023027
    DOI: https://doi.org/10.1080/07350015.2023.2238790
    Note: In: Journal of Business & Economic Statistics, 2023
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Kernel ; Nonparametric estimation ; Semiparametric model;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2023027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.