IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/317.html
   My bibliography  Save this paper

Second-order approximation for adaptive regression estimators

Author

Listed:
  • Linton, Oliver
  • Xiao, Zhijie

Abstract

We derive asymptotic expansions for semiparametric adaptive regression estimators. In particular, we derive the asymptotic distribution of the second-order effect of an adaptive estimator in a linear regression whose error density is of unknown functional form. We then show how the choice of smoothing parameters influences the estimator through higher order terms. A method of bandwidth selection is defined by minimizing the second-order mean squared error. We examine both independent and time series regressors; we also extend our results to a t-statistic. Monte Carlo simulations confirm the second order theory and the usefulness of the bandwidth selection method.

Suggested Citation

  • Linton, Oliver & Xiao, Zhijie, 2001. "Second-order approximation for adaptive regression estimators," LSE Research Online Documents on Economics 317, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:317
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/317/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.
    2. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    3. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    4. Hafner, C. M., 2022. "Dynamic Autoregressive Liquidity (DArLiQ)," Janeway Institute Working Papers 2206, Faculty of Economics, University of Cambridge.
    5. Tamaki, Kenichiro, 2007. "Second order optimality for estimators in time series regression models," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 638-659, March.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.