IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2022014.html
   My bibliography  Save this paper

Tail inference using extreme U-statistics

Author

Listed:
  • Oorschot, Jochem
  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Zhou, Chen

Abstract

Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance corresponds with the one of the Hájek projection, the proof goes beyond considering the first term in Hoeffding’s variance decomposition; instead, a growing number of terms needs to be incorporated in the proof. To show the usefulness of extreme U-statistics, we propose a kernel depending on the three highest order statistics leading to an unbiased estimator of the shape parameter of the generalized Pareto distribution. When applied to samples in the max-domain of attraction of an extreme value distribution, the extreme U-statistic based on this kernel produces a locationscale invariant estimator of the extreme value index which is asymptotically normal and whose finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.

Suggested Citation

  • Oorschot, Jochem & Segers, Johan & Zhou, Chen, 2022. "Tail inference using extreme U-statistics," LIDAM Discussion Papers ISBA 2022014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2022014
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A260189/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Chen, 2009. "Existence and consistency of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 794-815, April.
    2. Seyoon Lee & Joseph H. T. Kim, 2019. "Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(8), pages 2014-2038, April.
    3. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    4. Bucher, Axel & Segers, Johan, 2018. "Inference for heavy tailed stationary time series based on sliding blocks," LIDAM Reprints ISBA 2018007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budhi Arta Surya, 2021. "Some results on maximum likelihood from incomplete data: finite sample properties and improved M-estimator for resampling," Papers 2108.01243, arXiv.org, revised Jul 2022.
    2. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    3. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    4. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    5. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. Schweer, Sebastian & Wichelhaus, Cornelia, 2020. "Nonparametric estimation of the service time distribution in discrete-time queueing networks," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4643-4666.
    8. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    9. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    10. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    11. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    12. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    13. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2018. "Rationalizing Rational Expectations? Tests and Deviations," IZA Discussion Papers 11989, Institute of Labor Economics (IZA).
    14. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    15. Julian Martinez-Iriarte & YiXiao Sun, 2022. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach," Working Papers 131, Red Nacional de Investigadores en Economía (RedNIE).
    16. Khanh To Duc & Monica Chiogna & Gianfranco Adimari, 2019. "Estimation of the volume under the ROC surface in presence of nonignorable verification bias," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 695-722, December.
    17. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    18. Jochmans, Koen & Higgins, Ayden, 2022. "Bootstrap inference for fixed-effect models," TSE Working Papers 22-1328, Toulouse School of Economics (TSE), revised Dec 2023.
    19. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    20. , & , & ,, 2016. "Fragility of asymptotic agreement under Bayesian learning," Theoretical Economics, Econometric Society, vol. 11(1), January.

    More about this item

    Keywords

    U-statistic ; Generalized Pareto distribution ; Hájek projection ; Extreme value index;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2022014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.