IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2020024.html
   My bibliography  Save this paper

One- versus multi-component regular variation and extremes of Markov trees

Author

Listed:
  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up to a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise. Keywords: Conditional independence; graphical model; H¨usler–Reiss distribution; max-linear model; Markov tree; multivariate Pareto distribution; Pickands dependence function; regular variation; root change formula; tail measure; tail tree; time change formula.

Suggested Citation

  • Segers, Johan, 2020. "One- versus multi-component regular variation and extremes of Markov trees," LIDAM Reprints ISBA 2020024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2020024
    DOI: https://doi.org/10.1017/apr.2020.22
    Note: In: Advances in Applied Probability - Vol. 52, no.3, p. 855-878 (2020)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Clémençon, Stephan & Huet, Nathan & Sabourin, Anne, 2024. "Regular variation in Hilbert spaces and principal component analysis for functional extremes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    3. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2020024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.