IDEAS home Printed from https://ideas.repec.org/p/ags/uwarer/269588.html
   My bibliography  Save this paper

Sensitivity of the chi-squared goodness-of-fit test to the partitioning of data

Author

Listed:
  • Boero, Gianna
  • Smith, Jeremy
  • Wallis, Kenneth F.

Abstract

In this paper we conduct a Monte Carlo study to determine the power of Pearson’s overall goodness-of-fit test as well as the “Pearson analog” tests (see Anderson (1994)) to detect rejections due to shifts in variance, skewness and kurtosis, as we vary the number and location of the partition points. Simulations are conducted for small and moderate sample sizes. While it is generally recommended that to improve the power of the goodness-of-fit test the partition points are equiprobable, we find that power can be improved by the use of non-equiprobable partitions.

Suggested Citation

  • Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2004. "Sensitivity of the chi-squared goodness-of-fit test to the partitioning of data," Economic Research Papers 269588, University of Warwick - Department of Economics.
  • Handle: RePEc:ags:uwarer:269588
    DOI: 10.22004/ag.econ.269588
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/269588/files/twerp694.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/269588/files/twerp694.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.269588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marrocu, Emanuela & Gianna Boero, 2003. "The Performance of SETAR models by Regime: A Conditional Evaluation of Interval and Density Forecasts," Royal Economic Society Annual Conference 2003 147, Royal Economic Society.
    2. Boero, Gianna & Marrocu, Emanuela, 2004. "The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts," International Journal of Forecasting, Elsevier, vol. 20(2), pages 305-320.
    3. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2004. "Decompositions of Pearson's chi-squared test," Journal of Econometrics, Elsevier, vol. 123(1), pages 189-193, November.
    4. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    5. repec:sae:niesru:v:167:y::i:1:p:106-112 is not listed on IDEAS
    6. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    7. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    8. Kenneth F. Wallis, 1999. "Asymmetric density forecasts of inflation and the Bank of England's fan chart," National Institute Economic Review, National Institute of Economic and Social Research, vol. 167(1), pages 106-112, January.
    9. Anderson, Gordon, 1994. "Simple tests of distributional form," Journal of Econometrics, Elsevier, vol. 62(2), pages 265-276, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Menezes, Mozart B.C. & da Silveira, Giovani J.C. & Guimarães, Renato, 2018. "Estimating demand variability and capacity costs due to social network influence: The hidden cost of connection," International Journal of Production Economics, Elsevier, vol. 197(C), pages 317-329.
    2. Bontemps, Christian, 2013. "Moment-Based Tests for Discrete Distributions," IDEI Working Papers 772, Institut d'Économie Industrielle (IDEI), Toulouse, revised Oct 2014.
    3. Oller, Lars-Erik & Teterukovsky, Alex, 2007. "Quantifying the quality of macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 23(2), pages 205-217.
    4. Gordon Anderson, 2008. "The empirical assessment of multidimensional welfare, inequality and poverty: Sample weighted multivariate generalizations of the Kolmogorov–Smirnov two sample tests for stochastic dominance," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(1), pages 73-87, March.
    5. Bontemps, Christian, 2014. "Simple moment-based tests for value-at-risk models and discrete distribution," TSE Working Papers 14-535, Toulouse School of Economics (TSE).
    6. Hasebe, Takuya & Vijverberg, Wim P., 2012. "A Flexible Sample Selection Model: A GTL-Copula Approach," IZA Discussion Papers 7003, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2002. "The Properties of Some Goodness-of-Fit Tests," Economic Research Papers 269466, University of Warwick - Department of Economics.
    2. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2004. "Decompositions of Pearson's chi-squared test," Journal of Econometrics, Elsevier, vol. 123(1), pages 189-193, November.
    3. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    4. Goodhart, C. A. E. & Pradhan, Manoj, 2023. "A snapshot of Central Bank (two year) forecasting: a mixed picture," LSE Research Online Documents on Economics 118680, London School of Economics and Political Science, LSE Library.
    5. Dowd, Kevin, 2007. "Too good to be true? The (In)credibility of the UK inflation fan charts," Journal of Macroeconomics, Elsevier, vol. 29(1), pages 91-102, March.
    6. Adrian Cantemir Calin & Tiberiu Diaconescu & Oana – Cristina Popovici, 2014. "Nonlinear Models for Economic Forecasting Applications: An Evolutionary Discussion," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 42-47, June.
    7. Goodhart Charles A.E., 2005. "The Monetary Policy Committee's Reaction Function: An Exercise in Estimation," The B.E. Journal of Macroeconomics, De Gruyter, vol. 5(1), pages 1-42, August.
    8. repec:ntu:ntugeo:vol2-iss1-14-042 is not listed on IDEAS
    9. Boero, Gianna & Marrocu, Emanuela, 2004. "The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts," International Journal of Forecasting, Elsevier, vol. 20(2), pages 305-320.
    10. Heather M. Anderson & Chin Nam Low, 2006. "Random Walk Smooth Transition Autoregressive Models," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 247-281, Emerald Group Publishing Limited.
    11. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    12. Knüppel, Malte & Schultefrankenfeld, Guido, 2008. "How informative are macroeconomic risk forecasts? An examination of the Bank of England's inflation forecasts," Discussion Paper Series 1: Economic Studies 2008,14, Deutsche Bundesbank.
    13. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    14. Marco Vega, 2004. "Policy Makers Priors and Inflation Density Forecasts," Econometrics 0403005, University Library of Munich, Germany.
    15. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    16. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    17. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    18. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    19. W. D. Walls, 2005. "Modelling heavy tails and skewness in film returns," Applied Financial Economics, Taylor & Francis Journals, vol. 15(17), pages 1181-1188.
    20. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 819-838, August.
    21. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.

    More about this item

    Keywords

    Agricultural and Food Policy; Research Methods/ Statistical Methods;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwarer:269588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.