IDEAS home Printed from https://ideas.repec.org/p/ags/ubzefd/342427.html
   My bibliography  Save this paper

Private service provision contributes to widespread innovation adoption among smallholder farmers: Laser land levelling technology in northwestern India

Author

Listed:
  • Surendran-Padmaja, Subash
  • Parlasca, Martin C.
  • Qaim, Matin
  • Krishna, Vijesh V.

Abstract

This study investigates key institutional factors promoting the adoption of laser land levelling (LLL), a technology that has gained wide popularity among farmers in northwestern India despite being indivisible. The main objective is to evaluate the role of service providers, offering LLL on a rental basis to farmers, for technology dissemination among smallholders with fragmented plots. Plot-level data from 1,661 households across 84 villages in Punjab and western Uttar Pradesh in India were collected and used to analyse farmers’ LLL technology perceptions and adoption decisions. Regression models were developed to estimate the role of local service provision for LLL adoption while controlling for farm, household, and other contextual variables. The analysis pays particular attention to the heterogeneous effects of service provision on farmers with different farm and plot sizes. The data and estimates reveal that local access to a larger number of service providers is associated with higher rates of LLL adoption among farmers. The effect of service providers on adoption varies by farm and plot size: it is larger on smaller farms/plots. The findings suggest that a conducive institutional environment that accommodates the specific needs of different farm sizes can speed up innovation adoption. This finding makes a case for re-evaluating traditional agricultural technology scaling models to include individual service provision for broader and more inclusive adoption.

Suggested Citation

  • Surendran-Padmaja, Subash & Parlasca, Martin C. & Qaim, Matin & Krishna, Vijesh V., 2024. "Private service provision contributes to widespread innovation adoption among smallholder farmers: Laser land levelling technology in northwestern India," Discussion Papers 342427, University of Bonn, Center for Development Research (ZEF).
  • Handle: RePEc:ags:ubzefd:342427
    DOI: 10.22004/ag.econ.342427
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/342427/files/346_%20Private%20service%20provision%20contributes%20to%20widespread%20innovation%20adoption%20among%20smallholder%20farmers%20.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.342427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schut, Marc & Leeuwis, Cees & Thiele, Graham, 2020. "Science of Scaling: Understanding and guiding the scaling of innovation for societal outcomes," Agricultural Systems, Elsevier, vol. 184(C).
    2. Liang Lu & Thomas Reardon & David Zilberman, 2016. "Supply Chain Design and Adoption of Indivisible Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1419-1431.
    3. Sunding, David & Zilberman, David, 2001. "The agricultural innovation process: Research and technology adoption in a changing agricultural sector," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 4, pages 207-261, Elsevier.
    4. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    5. Gulati, Kajal & Lybbert, Travis J. & Spielman, David J., 2017. "Diffusing to level fields: Evolution of laser land leveling technology markets in India," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258387, Agricultural and Applied Economics Association.
    6. Barun Deb Pal & Shreya Kapoor & Sunil Saroj & M.L. Jat & Yogesh Kumar & K.H. Anantha, 2021. "Adoption of climate-smart agriculture technology in drought-prone area of India – implications on farmers' livelihoods," Journal of Agribusiness in Developing and Emerging Economies, Emerald Group Publishing Limited, vol. 12(5), pages 824-848, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott Kaplan & Ben Gordon & Feras El Zarwi & Joan L. Walker & David Zilberman, 2019. "The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 583-597, December.
    2. Amir Heiman & Joel Ferguson & David Zilberman, 2020. "Marketing and Technology Adoption and Diffusion," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 21-30, March.
    3. Pardey, Philip G. & Alston, Julian M. & Ruttan, Vernon W., 2010. "The Economics of Innovation and Technical Change in Agriculture," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 939-984, Elsevier.
    4. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    5. Oscar Montes de Oca Munguia & Rick Llewellyn, 2020. "The Adopters versus the Technology: Which Matters More when Predicting or Explaining Adoption?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 80-91, March.
    6. Singh, Nirvikar, 2015. "Punjab’s Agricultural Innovation Challenge," Santa Cruz Department of Economics, Working Paper Series qt4716p3vr, Department of Economics, UC Santa Cruz.
    7. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    8. Michelson, Hope & Fairbairn, Anna & Ellison, Brenna & Maertens, Annemie & Manyong, Victor, 2021. "Misperceived quality: Fertilizer in Tanzania," Journal of Development Economics, Elsevier, vol. 148(C).
    9. Sylvain Dessy & Jacques Ewoudou & Isabelle Ouellet, 2006. "Understanding the Persistent Low Performance of African Agriculture," Cahiers de recherche 0622, CIRPEE.
    10. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    11. Franklin Simtowe & Paswel Marenya & Emily Amondo & Mosisa Worku & Dil Bahadur Rahut & Olaf Erenstein, 2019. "Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 7(1), pages 1-23, December.
    12. Tiffany Shih & Brian Wright, 2011. "Agricultural Innovation," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 49-85, National Bureau of Economic Research, Inc.
    13. Diagne, Aliou, 2006. "Taking a New Look at Empirical Models of Adoption: Average Treatment Effect Estimation of Adoption Rates and their Determinants," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25623, International Association of Agricultural Economists.
    14. Paul Diederen & Hans Van Meijl & Arjan Wolters & Katarzyna Bijak, 2003. "Innovation adoption in agriculture : innovators, early adopters and laggards," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 67, pages 29-50.
    15. Raju Ghimire & Wen-Chi Huang, 2015. "Household wealth and adoption of improved maize varieties in Nepal: a double-hurdle approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1321-1335, December.
    16. Jia, Xiangping, 2009. "Synergistic Green and White Revolution: Evidence from Kenya and Uganda," 2009 Conference, August 16-22, 2009, Beijing, China 51367, International Association of Agricultural Economists.
    17. Liang Lu & Thomas Reardon & David Zilberman, 2016. "Supply Chain Design and Adoption of Indivisible Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1419-1431.
    18. Tavneet Suri, 2006. "Selection and Comparative Advantage in Technology Adoption," Working Papers 944, Economic Growth Center, Yale University.
    19. Thomas Daum & Regina Birner, 2017. "The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 959-979, October.
    20. Elaine M. Liu, 2013. "Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1386-1403, October.

    More about this item

    Keywords

    Agricultural and Food Policy; Research and Development/Tech Change/Emerging Technologies;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubzefd:342427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.