IDEAS home Printed from https://ideas.repec.org/p/ags/saea16/229330.html
   My bibliography  Save this paper

Production efficiency and commercialization channels among small-scale farmers: Evidence for raspberry production in Central Chile

Author

Listed:
  • Jara-Rojas, Roberto
  • Bravo-Ureta, Boris
  • Solis, Daniel
  • Martinez, Daniela

Abstract

Raspberry production has become a significant cash crop that supports the livelihood of many small-scale growers in Central Chile. Almost 100% of raspberry production is exported, and the cultivation of this crop has put pressure on smallholder farmers to integrate into the modern agri-food chain system. The goal of this article is to analyze technical efficiency (TE) levels for a sample of 139 small-scale raspberry farmers in the Maule region of Chile, the main production area for this crop in the country. One focus of this study is to evaluate the association between TE -understood as an indicator of managerial performance- and farmers’ decisions to sell their production directly to the agri-industry or indirectly through an informal middleman. Using a stochastic production frontier model we find that the commercialization decision plays an important role in the productivity and revenue of small-scale raspberry producers. The analysis also reveals a positive relationship between TE levels and income among experienced and trained farmers. The role of implementing food quality and safety standards on farm income is also discussed.

Suggested Citation

  • Jara-Rojas, Roberto & Bravo-Ureta, Boris & Solis, Daniel & Martinez, Daniela, 2016. "Production efficiency and commercialization channels among small-scale farmers: Evidence for raspberry production in Central Chile," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229330, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea16:229330
    DOI: 10.22004/ag.econ.229330
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/229330/files/SAEA.Chile.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.229330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Plénet, Daniel & Giauque, Pierre & Navarro, Eric & Millan, Muriel & Hilaire, Christian & Hostalnou, Eric & Lyoussoufi, Abder & Samie, Jean-François, 2009. "Using on-field data to develop the EFI© information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France," Agricultural Systems, Elsevier, vol. 100(1-3), pages 1-10, April.
    2. R.F. Townsend & J. Kirsten & N. Vink, 1998. "Farm size, productivity and returns to scale in agriculture revisited: a case study of wine producers in South Africa," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 175-180, September.
    3. Gershon Feder & Rinku Murgai & Jaime B. Quizon, 2004. "Sending Farmers Back to School: The Impact of Farmer Field Schools in Indonesia," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 26(1), pages 45-62.
    4. Lassaad Lachaal & Boubaker Karray & Boubaker Dhehibi & Ali Chebil, 2005. "Technical Efficiency Measures and Its Determinants for Olive Producing Farms in Tunisia: A Stochastic Frontier Analysis," African Development Review, African Development Bank, vol. 17(3), pages 580-591.
    5. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    6. Lambarraa, Fatima & Serra, Teresa & Gil Roig, Jose Maria, 2006. "Technical efficiency analysis and decomposition of productivity growth of Spanish olive farms," 98th Seminar, June 29-July 2, 2006, Chania, Crete, Greece 10071, European Association of Agricultural Economists.
    7. Darla Munroe, 2001. "Economic Efficiency in Polish Peasant Farming: An International Perspective," Regional Studies, Taylor & Francis Journals, vol. 35(5), pages 461-471.
    8. Min Li & Terry Sicular, 2013. "Aging of the labor force and technical efficiency in crop production: Evidence from Liaoning province, China," China Agricultural Economic Review, Emerald Group Publishing, vol. 5(3), pages 342-359, August.
    9. Abdulai, Awudu & Huffman, Wallace, 2000. "Structural Adjustment and Economic Efficiency of Rice Farmers in Northern Ghana," Economic Development and Cultural Change, University of Chicago Press, vol. 48(3), pages 503-520, April.
    10. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    11. repec:bla:devpol:v:22:y:2004:i:6:p:669-699 is not listed on IDEAS
    12. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    13. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    14. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    15. Handschuch, Christina & Wollni, Meike & Villalobos, Pablo, 2013. "Adoption of food safety and quality standards among Chilean raspberry producers – Do smallholders benefit?," Food Policy, Elsevier, vol. 40(C), pages 64-73.
    16. J. Sauer & B. Balint, 2008. "Distorted prices and producer efficiency: the case of Romania," Journal of Productivity Analysis, Springer, vol. 29(2), pages 131-142, April.
    17. Melo, Oscar & Engler, Alejandra & Nahuehual, Laura & Cofre, Gabriela & Barrena, José, 2014. "Do Sanitary, Phytosanitary, and Quality-related Standards Affect International Trade? Evidence from Chilean Fruit Exports," World Development, Elsevier, vol. 54(C), pages 350-359.
    18. Renuka Mahadevan, 2009. "The viability of Fiji's sugar industry," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 36(4), pages 309-325, September.
    19. Solomon Asfaw & Dagmar Mithöfer & Hermann Waibel, 2009. "EU Food Safety Standards, Pesticide Use and Farm‐level Productivity: The Case of High‐value Crops in Kenya," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(3), pages 645-667, September.
    20. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    21. Min Li & Terry Sicular, 2013. "Aging of the labor force and technical efficiency in crop production," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 5(3), pages 342-359, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cárcamo, Jorge & von Cramon-Taubadel, Stephan, 2016. "Assessing small-scale raspberry producers’ risk and ambiguity preferences: evidence from field- experiment data in rural Chile," Department of Agricultural and Rural Development (DARE) Discussion Papers 260774, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    2. Nadia Adnan & Shahrina Md Nordin, 2021. "How COVID 19 effect Malaysian paddy industry? Adoption of green fertilizer a potential resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8089-8129, June.
    3. Cárcamo, Jorge & Cramon-Taubadel, Stephan von, 2016. "Assessing small-scale raspberry producers' risk and ambiguity preferences: Evidence from field-experiment data in rural Chile," DARE Discussion Papers 1610, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Solis, Daniel & Arriagada, Daniela Martinez, 2017. "Technical Efficiency and Marketing Channels Among Small-Scale Farmers: Evidence for Raspberry Production in Chile," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(3), November.
    2. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Moreira, Victor H. & Diaz, Jose, 2012. "Natural Resource Conservation and Technical Efficiency from Small-scale Farmers in Central Chile," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126227, International Association of Agricultural Economists.
    3. Ashok K. Mishra & Saleem Shaik & Aditya R. Khanal & Subir Bairagi, 2018. "Contract farming and technical efficiency: Evidence from low†value and high†value crops in Nepal," Agribusiness, John Wiley & Sons, Ltd., vol. 34(2), pages 426-440, March.
    4. Krzysztof Piotr Pawłowski & Wawrzyniec Czubak & Jagoda Zmyślona, 2021. "Regional Diversity of Technical Efficiency in Agriculture as a Results of an Overinvestment: A Case Study from Poland," Energies, MDPI, vol. 14(11), pages 1-20, June.
    5. Zhihai Yang & Amin W. Mugera & Ning Yin & Yumeng Wang, 2018. "Soil conservation practices and production efficiency of smallholder farms in Central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1517-1533, August.
    6. Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
    7. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    8. Hai-Dang Nguyen & Thanh Ngo & Tu DQ Le & Huong Ho & Hai T.H. Nguyen, 2019. "The Role of Knowledge in Sustainable Agriculture: Evidence from Rice Farms’ Technical Efficiency in Hanoi, Vietnam," Sustainability, MDPI, vol. 11(9), pages 1-10, April.
    9. García-Suárez, Federico & Pérez-Quesada, Gabriela & Molina, Carlos, 2022. "Rangeland cattle production in Uruguay: Single-output versus multi-output efficiency measures," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 22(01), June.
    10. Quang Nguyen & Sean Pascoe & Louisa Coglan & Son Nghiem, 2021. "The sensitivity of efficiency scores to input and other choices in stochastic frontier analysis: an empirical investigation," Journal of Productivity Analysis, Springer, vol. 55(1), pages 31-40, February.
    11. Nguyen To-The & Tuan Nguyen-Anh, 2021. "Impact of government intervention to maize efficiency at farmer’s level across time: a robust evidence in Northern Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2038-2061, February.
    12. K. Ogundari, 2008. "Resource-productivity, allocative efficiency and determinants of technical efficiency of rainfed rice farmers: A guide for food security policy in Nigeria," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 54(5), pages 224-233.
    13. Anbes Tenaye, 2020. "Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia," Economies, MDPI, vol. 8(2), pages 1-27, April.
    14. repec:aer:wpaper:172 is not listed on IDEAS
    15. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    16. Jun Ho Seok & Hanpil Moon & GwanSeon Kim & Michael R. Reed, 2018. "Is Aging the Important Factor for Sustainable Agricultural Development in Korea? Evidence from the Relationship between Aging and Farm Technical Efficiency," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    17. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    18. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    19. Goyal, S.K. & Suhag, K.S. & Pandey, U.K., 2006. "An Estimation of Technical Efficiency of Paddy Farmers in Haryana State of India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(1), pages 1-15.
    20. Nay, Myo Aung, 2011. "Agricultural efficiency of rice farmers in Myanmar : a case study in selected areas," IDE Discussion Papers 306, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    21. Cazals Catherine & Dudley Paul & Florens Jean-Pierre & Jones Michael, 2011. "The Effect of Unobserved Heterogeneity in Stochastic Frontier Estimation: Comparison of Cross Section and Panel with Simulated Data for the Postal Sector," Review of Network Economics, De Gruyter, vol. 10(3), pages 1-22, September.

    More about this item

    Keywords

    International Development; Production Economics; Productivity Analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea16:229330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.