IDEAS home Printed from https://ideas.repec.org/p/ags/jhimwp/324625.html
   My bibliography  Save this paper

Klimawandelbedingte Ertragsveränderungen und Flächennutzung (KlimErtrag)

Author

Listed:
  • Söder, Mareike
  • Berg-Mohnicke, Michael
  • Bittner, Marlene
  • Ernst, Stefan
  • Feike, Til
  • Frühauf, Cathleen
  • Golla, Burkhard
  • Jänicke, Clemens
  • Jorzig, Christian
  • Leppelt, Thomas
  • Liedtke, Marco
  • Möller, Markus
  • Nendel, Claas
  • Offermann, Frank
  • Riedesel, Ludwig
  • Romanova, Vanya
  • Schmitt, Jonas
  • Schulz, Susanne
  • Sesermann, Diana-Maria
  • Rahman Shawon, Ashifur

Abstract

We provide an overview of the state of knowledge on the climate change impacts on German crop production and generate model-based, quantitative and spatially differentiated simulations of the yield changes of the most important German arable crops, up to the middle of the century. To simulate yields, we use several agro-ecosystem models and provide a meta-analysis of the related scientific literature. In addition, we consider the effects of specific weather conditions such as heat and drought periods on yields in the past. In order to assess the future development, we use the data of different climate projections . On average, with regional differences, the simulations show no decline in yields until the middle of the century and no increase in yield variability. We observe a decrease in the effectiveness of the CO2 fertilization effect for yield increases of winter wheat over time. The yields of silage maize benefit the least from CO2 fertilization. For the past, we identify yield losses due to extreme summer and spring drought for almost all crops as well as due to heat events for winter wheat and partly for oilseed rape. Heat-related yield losses increase for winter wheat with increasing CO2 concentrations. However, we cannot identify an unambiguous increase in yield losses due to extreme drought or waterlogging in the future. Uncertainties in the results exist, amongst other reasons, due to a wide range of future precipitation development in the underlying climate models, in particular with regard to the reliability of the precipitation projection in spring. The simulations do not consider adaptation of production to climate change as well as negative yield effects due to potential increase in storms, hail storms, heavy rain or harmful organisms.

Suggested Citation

  • Söder, Mareike & Berg-Mohnicke, Michael & Bittner, Marlene & Ernst, Stefan & Feike, Til & Frühauf, Cathleen & Golla, Burkhard & Jänicke, Clemens & Jorzig, Christian & Leppelt, Thomas & Liedtke, Marco , 2022. "Klimawandelbedingte Ertragsveränderungen und Flächennutzung (KlimErtrag)," Thünen Working Paper 324625, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
  • Handle: RePEc:ags:jhimwp:324625
    DOI: 10.22004/ag.econ.324625
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/324625/files/dn065147.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.324625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chatzopoulos, Thomas & Domínguez, Ignacio Pèrez & Zampieri, Matteo & Toreti, Andrea, 2017. "Extreme Weather and Global Agricultural Markets: Experimental Analysis of the Impacts of Heat Waves on Wheat Markets," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2017(1), June.
    2. Chatzopoulos, Thomas & Domínguez, Ignacio Pèrez & Zampieri, Matteo & Toreti, Andrea, 2017. "Extreme Weather and Global Agricultural Markets: Experimental Analysis of the Impacts of Heat Waves on Wheat Markets," 2018 International European Forum (163rd EAAE Seminar), February 5-9, 2018, Innsbruck-Igls, Austria 276937, International European Forum on System Dynamics and Innovation in Food Networks.
    3. Angelo C. Gurgel & John Reilly & Elodie Blanc, 2021. "Challenges in simulating economic effects of climate change on global agricultural markets," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    4. Uris L. C. Baldos & Thomas W. Hertel & Frances C. Moore, 2019. "Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and its Drivers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1455-1472, October.
    5. Uris L C Baldos & Thomas W Hertel & Frances C Moore, 2019. "Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and Its Drivers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(5), pages 1455-1472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Söder, Mareike & Berg-Mohnicke, Michael & Bittner, Marlene & Ernst, Stefan & Feike, Til & Frühauf, Cathleen & Golla, Burkhard & Jänicke, Clemens & Jorzig, Christian & Leppelt, Thomas & Liedtke, Marco , 2022. "Klimawandelbedingte Ertragsveränderungen und Flächennutzung (KlimErtrag)," Thünen Working Papers 198, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    2. Loïc Henry, 2023. "Adapting the designated area of geographical indications to climate change," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1088-1115, August.
    3. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    4. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    5. Rita Rani Chopra & Smruti Ranjan Behera, 2021. "Assessment of interstate dynamics of virtual water trade flows in primary crops production: Empirical evidence from India," Economics Bulletin, AccessEcon, vol. 41(3), pages 1860-1875.
    6. Chenchen Ding & Yong Xia & Yang Su & Feng Li & Changjiang Xiong & Jingwen Xu, 2022. "Study on the Impact of Climate Change on China’s Import Trade of Major Agricultural Products and Adaptation Strategies," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    7. Veeshan Rayamajhee & Wenmei Guo & Alok K. Bohara, 2021. "The Impact of Climate Change on Rice Production in Nepal," Economics of Disasters and Climate Change, Springer, vol. 5(1), pages 111-134, April.
    8. Farid Farrokhi & Heitor S. Pellegrina, 2020. "Global Trade and Margins of Productivity in Agriculture," NBER Working Papers 27350, National Bureau of Economic Research, Inc.
    9. Ram N. Acharya & Rajan Ghimire & Apar GC & Don Blayney, 2019. "Effect of Cover Crop on Farm Profitability and Risk in the Southern High Plains," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    10. Kym Anderson, 2022. "Agriculture in a more uncertain global trade environment," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 563-579, July.
    11. Sebastian Parra-Londono & Jaime Andres Tigreros & Carlos Alberto Montoya-Correa, 2024. "Colombian Crop Resilience: Evaluating National Yield Stability for Fruit and Vegetable Systems," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    12. Rudik, Ivan & Lyn, Gary & Tan, Weiliang & Ortiz-Bobea, Ariel, 2021. "Heterogeneity and Market Adaptation to Climate Change in Dynamic-Spatial Equilibrium," SocArXiv usghb, Center for Open Science.
    13. Baldos, Uris Lantz C., 2024. "Food inequality and climate change: compounding impacts on caloric undernutrition," 2024 Annual Meeting, July 28-30, New Orleans, LA 343904, Agricultural and Applied Economics Association.
    14. Jesus Puma-Cahua & Germán Belizario & Wilber Laqui & Roberto Alfaro & Edilberto Huaquisto & Elmer Calizaya, 2023. "Evaluating the Yields of the Rainfed Potato Crop under Climate Change Scenarios Using the AquaCrop Model in the Peruvian Altiplano," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    15. Philip Kofi Adom, 2024. "The Socioeconomic Impact of Climate Change in Developing Countries in the Next Decades," Working Papers 681, Center for Global Development.

    More about this item

    Keywords

    Crop Production/Industries; Environmental Economics and Policy; Land Economics/Use; Risk and Uncertainty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jhimwp:324625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/imagvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.