IDEAS home Printed from https://ideas.repec.org/p/ags/iaae18/277229.html
   My bibliography  Save this paper

The effect of bigger human bodies on future global calorie requirements

Author

Listed:
  • Depenbusch, L.
  • Klasen, S.

Abstract

Global food demand will see a rapid increase over the coming decades. Existing studies on future calorie demand consider mainly population growth and rising incomes. We add to the literature by estimating the effect of increases in human weight caused by rising BMI and height on future calorie requirements. We produce projections that are solely based on human energy requirements for maintenance of weight. We develop four different scenarios that affect this value and show that increases in human height and BMI could lead to an increase in global calorie requirements by 18.73 percentage points between 2010 and 2100 compared to a world where the weight per age-sex group would stay the same. These increases will particularly affect countries which are already facing higher rises in calorie requirements due to high population growth. The region most affected by this pattern is Sub-Saharan Africa. Acknowledgement : Financial support by the German Research Foundation (DFG) is gratefully acknowledged. We are thankful for comments by attendants of a Seminar at the GlobalFood Research Training Group and the Development Economics and Policy 2017 conference hosted by the Research Group on Development Economics of the Verein f r Socialpolitik.

Suggested Citation

  • Depenbusch, L. & Klasen, S., 2018. "The effect of bigger human bodies on future global calorie requirements," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277229, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae18:277229
    DOI: 10.22004/ag.econ.277229
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/277229/files/1413.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.277229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    2. Achoja, Felix Odemero & Enujeke, Emmanuel Chukudinife & Ogisi, Oraye Dicta & Overehirha, Rebecca Tega, 2020. "Multinomial Regression Analysis of Yam (Dioscorea Spp.) Consumers' Preferences and Varietal Diversification Pattern in Nigeria," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 10(02), January.
    3. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    4. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    5. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    6. repec:ags:ijag24:346816 is not listed on IDEAS
    7. Mounir Amdaoud, 2019. "Ressources naturelles, innovation et développement économique : vers une nouvelle approche," CEPN Working Papers 2019-06, Centre d'Economie de l'Université de Paris Nord.
    8. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    9. Bircol, Guilherme Augusto Carminato & Souza, Marcelo Pereira de & Fontes, Aurélio Teodoro & Chiarello, Adriano Garcia & Ranieri, Victor Eduardo Lima, 2018. "Planning by the rules: A fair chance for the environment in a land-use conflict area," Land Use Policy, Elsevier, vol. 76(C), pages 103-112.
    10. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    11. Fayaz Ahmad Lone & M. Imran Ganaie & Showkat A. Ganaie & M. Shafi Bhat & Javeed Ahmad Rather, 2023. "Drivers of agricultural land-use change in Kashmir valley - an application of mixed method approach," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    12. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Alemu, Aklilu W. & Beauchemin, Karen A. & Little, Shannan & Iravani, Majid & de Souza, Danielle Maia & McAllister, Tim A., 2020. "A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie," Ecosystem Services, Elsevier, vol. 45(C).
    13. Corbari, Chiara & Paciolla, Nicola & Rossi, Greta & Mancini, Marco, 2023. "A double two-sources energy-water balance model for improving evapotranspiration estimates and irrigation management in fruit trees fields," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Järnberg, Linn & Enfors Kautsky, Elin & Dagerskog, Linus & Olsson, Per, 2018. "Green niche actors navigating an opaque opportunity context: Prospects for a sustainable transformation of Ethiopian agriculture," Land Use Policy, Elsevier, vol. 71(C), pages 409-421.
    15. Tibor Sedláček & Pavel Horčička, 2019. "Proposal of updated XYZ system for the production of hybrid wheat seed," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 55(1), pages 35-38.
    16. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Wolfgang Britz & Roberto Roson, 2019. "G-RDEM: A GTAP-Based Recursive Dynamic CGE Model for Long-Term Baseline Generation and Analysis," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 50-96, June.
    18. Sailesh Ranjitkar & Dengpan Bu & Mark Wijk & Ying Ma & Lu Ma & Lianshen Zhao & Jianmin Shi & Chousheng Liu & Jianchu Xu, 2020. "Will heat stress take its toll on milk production in China?," Climatic Change, Springer, vol. 161(4), pages 637-652, August.
    19. Baldos, Uris Lantz C. & Hertel, Thomas W., 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), October.
    20. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    21. Felipe Lourenço & Ricardo Calado & Isabel Medina & Olga M. C. C. Ameixa, 2022. "The Potential Impacts by the Invasion of Insects Reared to Feed Livestock and Pet Animals in Europe and Other Regions: A Critical Review," Sustainability, MDPI, vol. 14(10), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae18:277229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.