IDEAS home Printed from https://ideas.repec.org/p/ags/gewi11/115358.html
   My bibliography  Save this paper

Eine Logit-Analyse Zur Differenzierung Von Käufern Und Nicht-Käufern Von Schulmilch In Deutschland

Author

Listed:
  • Peter, Guenter
  • Salamon, Petra
  • Christoph, Inken B.
  • Weible, Daniela
  • Burgelt, Doreen

Abstract

Vor dem Hintergrund eines sinkenden Schulmilchkonsums in Deutschland stellt sich generell die Frage, welche Faktoren für die Kaufentscheidung von Schulmilch wichtig sind und, ob unterschiedliche Konsummuster für einzelne Gruppen existieren. Dieser Beitrag erweitert bestehende ökonometrische Erklärungsansätze um Schüler- und Haushaltscharakteristika. Dazu werden auf der Grundlage der Discrete Choice-Theorie zwei Konsummuster, die Gruppe der Schulmilchbesteller und die Gruppe der Nicht-Besteller, betrachtet. Mit Hilfe eines Logit-Modells werden Einflussfaktoren analysiert, die über das Konsummuster entscheiden. Als wichtige Faktoren kristallisieren sich die befürwortenden und ablehnenden Einstellungen der Schulkinder und ihrer Eltern gegenüber Milch und Schulmilch heraus. Weiterhin variiert die Chance Schulmilch zu bestellen mit dem Geschlecht, dem Alter und dem Migrationshintergrund der Schulkinder. Schulkinder aus Haushalten mit niedrigen Nettoeinkommen weisen eine höhere Chance auf, keine Schulmilch zu bestellen als Kinder aus Haushalten mit höherem Einkommen. Das Produktsortiment beeinflusst ebenfalls die Bestellwahrscheinlichkeit. Ist dieses vielfältig, erhöht sie sich, werden hingegen auch andere Getränke angeboten, sinkt sie. School milk consumption is currently declining in Germany. To analyse the reasons for this development existing econometric models are extended by characteristics of pupils and their households. Based on discrete choice theory, a logit model is applied investigating factors which distinguish school milk buyers from non-buyers. Important factors are the attitude of pupils and children towards milk and school milk as well as nutritional behavior at school. Buying behavior varies with age, sex and the migration background of pupils. Girls, pupils with migration background and older pupils show a higher chance of being in the non-buyer group. The same holds for children who belong to a low-income household. At school a higher variety of school milk products increases the chance for buying school milk while offering non-milk beverages reduces it.

Suggested Citation

  • Peter, Guenter & Salamon, Petra & Christoph, Inken B. & Weible, Daniela & Burgelt, Doreen, 2011. "Eine Logit-Analyse Zur Differenzierung Von Käufern Und Nicht-Käufern Von Schulmilch In Deutschland," 51st Annual Conference, Halle, Germany, September 28-30, 2011 115358, German Association of Agricultural Economists (GEWISOLA).
  • Handle: RePEc:ags:gewi11:115358
    DOI: 10.22004/ag.econ.115358
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/115358/files/Peter_et_al.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.115358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Yavorsky & Elisabeth Honka & Keith Chen, 2021. "Consumer search in the U.S. auto industry: The role of dealership visits," Quantitative Marketing and Economics (QME), Springer, vol. 19(1), pages 1-52, March.
    2. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    3. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    4. Sebastian Heidenreich & Andrea Phillips-Beyer & Bruno Flamion & Melissa Ross & Jaein Seo & Kevin Marsh, 2021. "Benefit–Risk or Risk–Benefit Trade-Offs? Another Look at Attribute Ordering Effects in a Pilot Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(1), pages 65-74, January.
    5. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    6. Frith, Michael J., 2019. "Modelling taste heterogeneity regarding offence location choices," Journal of choice modelling, Elsevier, vol. 33(C).
    7. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    8. Boneva, Teodora & Golin, Marta & Kaufmann, Katja Maria & Rauh, Christopher, 2022. "Beliefs about Maternal Labor Supply," IZA Discussion Papers 15788, Institute of Labor Economics (IZA).
    9. Petrolia, Daniel & Interis, Matthew & Hwang, Joonghyun, 2015. "Single-Choice, Repeated-Choice, and Best-Worst Elicitation Formats: Do Results Differ and by How Much?," Working Papers 212479, Mississippi State University, Department of Agricultural Economics.
    10. Webb, Edward J.D. & Hess, Stephane, 2021. "Joint modelling of choice and rating data: Theory and examples," Journal of choice modelling, Elsevier, vol. 40(C).
    11. Jurgen Von Hagen & Jizhong Zhou, 2008. "The interaction between capital controls and exchange rate regimes: evidence from developing countries," International Economic Journal, Taylor & Francis Journals, vol. 22(2), pages 163-185.
    12. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    13. Laura-Lucia Richter & Melvyn Weeks, 2016. "Flexible Mixed Logit with Posterior Analysis: Exploring Willingness-to-Pay for Grid Resilience," Cambridge Working Papers in Economics 1631, Faculty of Economics, University of Cambridge.
    14. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    15. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    16. Robert Turner, 2013. "Using contingent choice surveys to inform national park management," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 3(2), pages 120-138, June.
    17. Andrea Ascani & Riccardo Crescenzi & Simona Iammarino, 2015. "Economic Institutions and the Location Strategies of European Multinationals in their Geographical Neighbourhood," LEQS – LSE 'Europe in Question' Discussion Paper Series 97, European Institute, LSE.
    18. Shenhao Wang & Qingyi Wang & Jinhua Zhao, 2018. "Deep Neural Networks for Choice Analysis: Extracting Complete Economic Information for Interpretation," Papers 1812.04528, arXiv.org, revised Apr 2021.
    19. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.
    20. Johnson, F. Reed & Ozdemir, Semra & Phillips, Kathryn A., 2010. "Effects of simplifying choice tasks on estimates of taste heterogeneity in stated-choice surveys," Social Science & Medicine, Elsevier, vol. 70(2), pages 183-190, January.

    More about this item

    Keywords

    Agribusiness;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gewi11:115358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gewisea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.