IDEAS home Printed from https://ideas.repec.org/p/ags/eaae08/44211.html
   My bibliography  Save this paper

Evaluating Different Growth Scenarios for Organic Farming Using Bayesian Techniques

Author

Listed:
  • Gardebroek, Cornelis

Abstract

Different views exist on the future development of organic agriculture. The Dutch government believes that in 2010 10% of the farm land will be used for organic farming. Others have a more radical view: due to increasing emphasis on sustainable production in the end all farming will be organic. Others believe in a more pessimistic scenario in which the recent growth in organic was just a temporary upswing and that the share of organic farmers already reached its maximum. In this paper different potential scenarios for the further growth of organic farming are evaluated using Bayesian techniques. A nonlinear logistic growth model explaining the share of organic farms is estimated using available historical data for Dutch agriculture. Various scenarios imply different prior values for the parameters. Because of the non-linear model specification a Metropolis-Hastings algorithm is used to simulate the posterior densities of the model parameters. Finally, using Bayesian model comparison techniques probabilities can be attached to the different scenarios. The proposed methodology is a promising tool for analysing technology diffusion in general when different scenarios for diffusion are possible and limited data is available.

Suggested Citation

  • Gardebroek, Cornelis, 2008. "Evaluating Different Growth Scenarios for Organic Farming Using Bayesian Techniques," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44211, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae08:44211
    DOI: 10.22004/ag.econ.44211
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/44211/files/322a.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.44211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bewley, Ronald & Fiebig, Denzil G., 1988. "A flexible logistic growth model with applications in telecommunications," International Journal of Forecasting, Elsevier, vol. 4(2), pages 177-192.
    2. F. R. Oliver, 1964. "Methods of Estimating the Logistic Growth Function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 13(2), pages 57-66, June.
    3. John Foster & Phillip Wild, 1999. "Detecting self-organisational change in economic processes exhibiting logistic growth," Journal of Evolutionary Economics, Springer, vol. 9(1), pages 109-133.
    4. Meade, Nigel & Islam, Towhidul, 1995. "Forecasting with growth curves: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 11(2), pages 199-215, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joost M. E. Pennings & Ale Smidts, 2003. "The Shape of Utility Functions and Organizational Behavior," Management Science, INFORMS, vol. 49(9), pages 1251-1263, September.
    2. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    3. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    4. Chang, Byeong-Yun & Li, Xu & Kim, Yun Bae, 2014. "Performance comparison of two diffusion models in a saturated mobile phone market," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 41-48.
    5. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    6. Joost M.E. Pennings & Philip Garcia, 2009. "The informational content of the shape of utility functions: financial strategic behavior," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 83-90.
    7. Bewley, Ronald, 1997. "The forecast process and academic research," International Journal of Forecasting, Elsevier, vol. 13(4), pages 433-437, December.
    8. Singh, Sanjay Kumar, 2006. "Future mobility in India: Implications for energy demand and CO2 emission," Transport Policy, Elsevier, vol. 13(5), pages 398-412, September.
    9. Sanjay Kumar SINGH & Vijay Lakshmi SINGH, 2023. "Internet diffusion in India: A study based on Growth Curve modelling," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 15(2), pages 29-42, June.
    10. Petre, Konstantin & Varoutas, Dimitris, 2022. "On the application of Machine Learning in telecommunications forecasting: A comparison," 31st European Regional ITS Conference, Gothenburg 2022: Reining in Digital Platforms? Challenging monopolies, promoting competition and developing regulatory regimes 265665, International Telecommunications Society (ITS).
    11. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
    12. Bewley, Ronald & Griffiths, William E., 2003. "The penetration of CDs in the sound recording market: issues in specification, model selection and forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 111-121.
    13. Catherine Bobtcheff & Christian Gollier & Richard Zeckhauser, 2008. "Resource allocations when projects have ranges of increasing returns," Journal of Risk and Uncertainty, Springer, vol. 37(1), pages 93-93, August.
    14. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    15. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    16. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    17. Massimo Florio & Sara Colautti, 2005. "A logistic growth theory of public expenditures: A study of five countries over 100 years," Public Choice, Springer, vol. 122(3), pages 355-393, March.
    18. Franklin M. Lartey, 2020. "Predicting Product Uptake Using Bass, Gompertz, and Logistic Diffusion Models: Application to a Broadband Product," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 9(2), pages 1-5, October.
    19. John Foster, 2011. "Evolutionary macroeconomics: a research agenda," Journal of Evolutionary Economics, Springer, vol. 21(1), pages 5-28, February.
    20. F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.

    More about this item

    Keywords

    Farm Management;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae08:44211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.