IDEAS home Printed from https://ideas.repec.org/p/ags/eaa107/6636.html
   My bibliography  Save this paper

Revenue and Cost Functions in PMP: a Methodological Integration for a Territorial Analysis of CAP

Author

Listed:
  • Arfini, Filippo
  • Donati, Michele
  • Grossi, L.
  • Paris, Quirino

Abstract

An integrated policy evaluation tool is proposed for assessing the effects of agricultural policy measures using all the information available at farm level. The tool combines the positive mathematical programming methodology with the cluster analysis technique by using the same panel of data. The PMP model proposed here allows to measure the effects of policy in term of agricultural supply responses including output market price variations. The novel procedure by which the PMP model is articulated permits to recover the set of farm level demand functions for agricultural products and the cost function characterizing the given sample of farms. Cluster analysis is useful for better appreciating the behaviour of farms before and after the policy scenario analysis by considering the transfers of farms among clusters. A decoupling scenario assessment presents the responses that the integrated tool can provide for evaluating agricultural policy instruments.

Suggested Citation

  • Arfini, Filippo & Donati, Michele & Grossi, L. & Paris, Quirino, 2008. "Revenue and Cost Functions in PMP: a Methodological Integration for a Territorial Analysis of CAP," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6636, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa107:6636
    DOI: 10.22004/ag.econ.6636
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/6636/files/cp08ar02.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.6636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    2. Lence, Sergio H & Miller, Douglas J, 1998. "Estimation of Multi-output Production Functions with Incomplete Data: A Generalised Maximum Entropy Approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(2), pages 188-209.
    3. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 57.
    4. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    5. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    6. Yves Léon & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The use of maximum entropy to estimate input-output coefficients from regional farm accounting data," Post-Print hal-01931589, HAL.
    7. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    8. Quirino Paris, 2001. "Symmetric Positive Equilibrium Problem: A Framework for Rationalizing Economic Behavior with Limited Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(4), pages 1049-1061.
    9. Yves Léony & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The Use of Maximum Entropy to Estimate Input‐Output Coefficients From Regional Farm Accounting Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(3), pages 425-439, September.
    10. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arfini, Filippo & Donati, Michele, 2011. "Organic Productions and Capacity to Respond to Market Signals and Policies: An Empirical Analysis of a Sample of FADN Farms," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114229, European Association of Agricultural Economists.
    2. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "Farm-level economic impacts of EU-CAP greening measures," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205309, Agricultural and Applied Economics Association.
    3. Kamel Elouhichi & Pascal Tillie & Aymeric Ricome & Sergio Gomez-Y-Paloma, 2020. "Modelling Farm-household Livelihoods in Developing Economies: Insights from three country case studies using LSMS-ISA data," JRC Research Reports JRC118822, Joint Research Centre.
    4. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    5. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    6. Kamel Louhichi & Pascal Tillie & Aymeric Ricome & Sergio Gomez y Paloma, 2020. "Modelling Farm-household Livelihoods in Developing Economies Insights from three country case studies using LSMS-ISA data [Modélisation des moyens de subsistance des ménages agricoles dans les écon," Post-Print hal-02544905, HAL.
    7. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    8. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfini, Filippo & Donati, Michele & Paris, Quirino, 2008. "Innovation in Estimation of Revenue and Cost Functions in PMP Using FADN Information at Regional Level," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44008, European Association of Agricultural Economists.
    2. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    3. Louhichi, Kamel & Jacquet, Florence & Butault, Jean Pierre, 2012. "Estimating input allocation from heterogeneous data sources: A comparison of alternative estimation approaches," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(2), pages 1-20.
    4. Frahan, Bruno Henry de, 2005. "PMP, Extensions and Alternative Methods: Introductory Review of the State of the Art," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24537, European Association of Agricultural Economists.
    5. Gocht, Alexander, 2005. "Assessment of Simulation Behavior of Different Mathematical Programming Approaches," 89th Seminar, February 2-5, 2005, Parma, Italy 232598, European Association of Agricultural Economists.
    6. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    7. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Fragoso, R. & Marques, C. & Lucas, M.R. & Martins, M.B. & Jorge, R., 2011. "The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem," Journal of Policy Modeling, Elsevier, vol. 33(2), pages 311-327, March.
    9. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    10. Doole, Graeme J. & Marsh, Dan K., 2014. "Methodological limitations in the evaluation of policies to reduce nitrate leaching from New Zealand agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    11. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
    12. Thomas Heckelei & Wolfgang Britz, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 57, pages 27-50.
    13. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    14. Polome, Philippe & Fernagut, Bruno & Harmignie, Olivier & Frahan, Bruno Henry de, 2005. "Multi-input Multi-output Farm-level Cost Function: A Comparison of Least Squares and Entropy Estimators," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24727, European Association of Agricultural Economists.
    15. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    16. Cortignani, Raffaele & Severini, Simone, 2010. "The impact of reforming the Common Agricultural Policy on the sustainability of the irrigated area of Central Italy. An empirical assessment by means of a Positive Mathematical Programming model," 120th Seminar, September 2-4, 2010, Chania, Crete 109318, European Association of Agricultural Economists.
    17. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    18. Heckelei, T. & Wolff, H., 2001. "Ansätze zur (Auf-)Lösung eines alten Methodenstreits: Ökonometrische Spezifikation von Programmierungsmodellen zur Agrarangebotsanalyse," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 37.
    19. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    20. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa107:6636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.