IDEAS home Printed from https://ideas.repec.org/p/ags/aaea18/273803.html
   My bibliography  Save this paper

How Well Do Rational Expectations Storage Model Forecast Crop Ending Stocks?

Author

Listed:
  • Zhang, Tianyang
  • Li, Ziran

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhang, Tianyang & Li, Ziran, 2018. "How Well Do Rational Expectations Storage Model Forecast Crop Ending Stocks?," 2018 Annual Meeting, August 5-7, Washington, D.C. 273803, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea18:273803
    DOI: 10.22004/ag.econ.273803
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273803/files/Abstracts_18_05_23_19_00_26_04__205_237_169_30_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olga Isengildina-Massa & Berna Karali & Scott H. Irwin, 2013. "When do the USDA forecasters make mistakes?," Applied Economics, Taylor & Francis Journals, vol. 45(36), pages 5086-5103, December.
    2. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    3. Botto, Augusto C. & Isengildina, Olga & Irwin, Scott H. & Good, Darrel L., 2006. "Accuracy Trends and Sources of Forecast Errors in WASDE Balance Sheet Categories for Corn and Soybeans," 2006 Annual meeting, July 23-26, Long Beach, CA 21332, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Jinzhi Xiao & Chad E. Hart & Sergio H. Lence, 2017. "USDA Forecasts Of Crop Ending Stocks: How Well Have They Performed?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(2), pages 220-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyang Zhang & Ziran Li, 2022. "Can a rational expectation storage model explain the USDA ending grain stocks forecast errors?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 313-337, March.
    2. Li, Ziran & Li, Ding & Zhang, Tengfei & Zhang, Tianyang, 2022. "Climate impact on the USDA ending stocks forecast errors," Finance Research Letters, Elsevier, vol. 48(C).
    3. MacDonald, Stephen & Ash, Mark & Cooke, Bryce, 2017. "The Evolution of Inefficiency in USDA’s Forecasts of U.S. and World Soybean Markets," MPRA Paper 87545, University Library of Munich, Germany.
    4. Etienne, Xiaoli L., 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205124, Agricultural and Applied Economics Association.
    5. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    6. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    7. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2020. "Can systemic risk measures predict economic shocks? Evidence from China," China Economic Review, Elsevier, vol. 64(C).
    8. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    9. Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021. "Bagging weak predictors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
    10. Boriss Siliverstovs, 2017. "International stock return predictability: on the role of the United States in bad and good times," Applied Economics Letters, Taylor & Francis Journals, vol. 24(11), pages 771-773, June.
    11. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    12. Liu, Shan & Li, Ziwei, 2023. "Macroeconomic attention and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 57(C).
    13. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    14. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    15. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    16. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    17. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    18. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    19. Sung Je Byun, 2017. "Speculation in Commodity Futures Markets, Inventories and the Price of Crude Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    20. Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea18:273803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.