IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235424.html
   My bibliography  Save this paper

On the Evaluation of Probability Forecasts: An Application to Qualitative Choice Models

Author

Listed:
  • Dharmasena, Senarath
  • Bessler, David
  • Capps, Oral. Jr

Abstract

Using data from Nielsen HomeScan scanner panel for calendar year 2003, we develop binary choice models to focus on the decision made by a sample of U.S. households to purchase various non-alcoholic beverages. We evaluate the probabilities generated through those qualitative choice models using an array of techniques such as expectation-prediction success tables; receiver operating characteristics (ROC) curve, Kullback-Leibler Information criteria; calibration; resolution (sorting); the Brier score; and the Yates partition of the Brier score. In using expectation-prediction success tables, we paid attention to sensitivity and specificity. Use of a naïve 0.50 cut-off to classify probabilities resulted in the over or under estimation of sensitivity and specificity values compared to the use of the market penetration value. Area under the ROC curve is suggested as an alternative to the use of 0.5 cut-off as well as cut-off at market penetration level to classify probabilities, because this method treats a wide range of cut-off probabilities to come up with a coherent measure in classifying probabilities. The area under the ROC was highest for coffee for with-in-sample probabilities while it was highest for fruit juice model for out-of-sample probabilities. Kullback-Leibler Information Criteria which selects the model with the highest log-likelihood function value observed at out-of-sample observations (OSLLF) to evaluate probabilities show “closeness” or deviation of model generated probabilities to the true data generating probability overall, although this method does not offer classification of probabilities for events that occurred versus that did not. Again, with respect to OSLLF value, probabilities associated with fruit juice model outperform all other beverages. Forecast probabilities with respect to most of the beverage purchases were well calibrated. All resolution graphs were almost flat against a 45-degree perfect resolution graph, indicative of poor sorting power of choice models. The Brier score was lowest for fruit juices and the highest for low-fat milk. According to the calculated Brier score, probability forecasts for fruit juices outperformed other non-alcoholic beverages. Although the Brier score gave an overall indication of the ability of a model to forecast accurately, the components of the Yates decomposition of the Brier score provided a clearer and broader indication of the ability of the model to forecast. With-in-sample probabilities generated through logit model for coffee outperforms probabilities generated for other beverages based on area under the ROC curve, covariance between probabilities and outcome index and slope of covariance. Out-of-sample probabilities generated through logit model for fruit juice performs better than any other beverage category based on area under the ROC curve, Brier Score, and OSLLF value. In the event where researchers are confronted with alternative models that issue probability forecasts, the accuracy of probability forecasts in determining the best model can be measured through myriad of metrics. Even though traditional measures such as expectation-prediction success tables, calibration and log-likelihood approaches are still used, ROC charts, resolution, the Brier score and the Yates partition of the Brier score to evaluate probabilities generated through alternative models are highly recommended.

Suggested Citation

  • Dharmasena, Senarath & Bessler, David & Capps, Oral. Jr, 2016. "On the Evaluation of Probability Forecasts: An Application to Qualitative Choice Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235424, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235424
    DOI: 10.22004/ag.econ.235424
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235424/files/Dharmasena_Bessler_Capps_Probability_forecasting_AAEA_2016.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Bessler & Robert Ruffley, 2004. "Prequential analysis of stock market returns," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 399-412.
    2. Allan H. Murphy & Robert L. Winkler, 1977. "Reliability of Subjective Probability Forecasts of Precipitation and Temperature," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 41-47, March.
    3. Kling, John L & Bessler, David A, 1989. "Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output," The Journal of Business, University of Chicago Press, vol. 62(4), pages 477-499, October.
    4. Zellner, Arnold & Hong, Chansik & Min, Chung-ki, 1991. "Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 275-304.
    5. Yates, J. Frank, 1988. "Analyzing the accuracy of probability judgments for multiple events: An extension of the covariance decomposition," Organizational Behavior and Human Decision Processes, Elsevier, vol. 41(3), pages 281-299, June.
    6. Norwood, F. Bailey & Lusk, Jayson L. & Brorsen, B. Wade, 2004. "Model Selection for Discrete Dependent Variables: Better Statistics for Better Steaks," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-16, December.
    7. Bruce A. Desmarais & Jeffrey J. Harden, 2013. "Testing for zero inflation in count models: Bias correction for the Vuong test," Stata Journal, StataCorp LP, vol. 13(4), pages 810-835, December.
    8. Anders Hald, 2001. "On the History of the Correction for Grouping, 1873–1922," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 417-428, September.
    9. George Ferguson, 1941. "The application of Sheppard's correction for grouping," Psychometrika, Springer;The Psychometric Society, vol. 6(1), pages 21-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
    2. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    3. David Bessler & Robert Ruffley, 2004. "Prequential analysis of stock market returns," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 399-412.
    4. Casillas-Olvera, Gabriel & Bessler, David A., 2006. "Probability forecasting and central bank accountability," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 223-234, February.
    5. Kannika Duangnate & James W. Mjelde, 2020. "Prequential forecasting in the presence of structure breaks in natural gas spot markets," Empirical Economics, Springer, vol. 59(5), pages 2363-2384, November.
    6. Chen, Junyi & McCarl, Bruce A. & Price, Edwin & Wu, Ximing & Bessler, David A., 2016. "Climate as a Cause of Conflict: An Econometric Analysis," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229783, Southern Agricultural Economics Association.
    7. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    8. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    9. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    10. Gunnar Taraldsen, 2011. "Analysis of rounded exponential data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 977-986, February.
    11. Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
    12. McKenzie, Craig R.M. & Liersch, Michael J. & Yaniv, Ilan, 2008. "Overconfidence in interval estimates: What does expertise buy you?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 107(2), pages 179-191, November.
    13. Kazimi, Camilla & Brownstone, David, 1999. "Bootstrap confidence bands for shrinkage estimators," Journal of Econometrics, Elsevier, vol. 90(1), pages 99-127, May.
    14. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    15. Emmanuel Apergis & Nicholas Apergis, 2021. "The impact of COVID-19 on economic growth: evidence from a Bayesian Panel Vector Autoregressive (BPVAR) model," Applied Economics, Taylor & Francis Journals, vol. 53(58), pages 6739-6751, December.
    16. Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
    17. Nada Kulendran & Kevin K.F. Wong, 2009. "Predicting Quarterly Hong Kong Tourism Demand Growth Rates, Directional Changes and Turning Points with Composite Leading Indicators," Tourism Economics, , vol. 15(2), pages 307-322, June.
    18. K J Wilson & M Farrow, 2010. "Bayes linear kinematics in the analysis of failure rates and failure time distributions," Journal of Risk and Reliability, , vol. 224(4), pages 309-321, December.
    19. Harvey, Nigel & Koehler, Derek J. & Ayton, Peter, 1997. "Judgments of Decision Effectiveness: Actor-Observer Differences in Overconfidence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 70(3), pages 267-282, June.
    20. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.