IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/169811.html
   My bibliography  Save this paper

U.S. Demand for Wellness and Functional Beverages and Implications on Nutritional Intake: An Application of EASI Demand System Capturing Diverse Preference Heterogeniety

Author

Listed:
  • Dharmasena, Senarath
  • Capps, Oral, Jr.

Abstract

No abstract is available for this item.

Suggested Citation

  • Dharmasena, Senarath & Capps, Oral, Jr., 2014. "U.S. Demand for Wellness and Functional Beverages and Implications on Nutritional Intake: An Application of EASI Demand System Capturing Diverse Preference Heterogeniety," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169811, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:169811
    DOI: 10.22004/ag.econ.169811
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/169811/files/Dharmasena%20and%20Capps%20AAEA%202014%20_poster_%20preliminary%20version%205-26-2014.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.169811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.
    2. Barten, Anton P, 1993. "Consumer Allocation Models: Choice of Functional Form," Empirical Economics, Springer, vol. 18(1), pages 129-158.
    3. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    4. Walter Beckert & Richard Blundell, 2004. "Invertibility of Nonparametric Stochastic Demand Functions," Birkbeck Working Papers in Economics and Finance 0406, Birkbeck, Department of Economics, Mathematics & Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel & Krishna Pendakur, 2009. "Tricks with Hicks: The EASI Demand System," American Economic Review, American Economic Association, vol. 99(3), pages 827-863, June.
    2. McAleer, Michael & Medeiros, Marcelo C. & Slottje, Daniel, 2008. "A neural network demand system with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 147(2), pages 359-371, December.
    3. Mette Lunde Christensen, 2002. "Heterogeneity in consumer demands and the income effect: evidence from panel data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 C4-1, International Conferences on Panel Data.
    4. Knobel, Alexander (Кнобель, Александр) & Chentsov, Alexander (Ченцов, Александр), 2018. "The Impact of Exchange Rates and Their Volatility on Russia's Foreign Trade, Taking into Account its Membership in EAEU [Влияние Обменных Курсов И Их Волатильности На Внешнюю Торговлю России С Учет," Working Papers 061824, Russian Presidential Academy of National Economy and Public Administration.
    5. Arthur Lewbel, 2006. "Modeling Heterogeneity," Boston College Working Papers in Economics 650, Boston College Department of Economics.
    6. Song, Ze & Li, Lianyou & Ma, Chao, 2013. "The EASI Demand System : Evidence from China Household," MPRA Paper 48435, University Library of Munich, Germany.
    7. Timofeeva, Anastasiia, 2015. "On endogeneity of consumer expenditures in the estimation of households demand system," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 37(1), pages 87-106.
    8. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    9. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    10. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    11. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    12. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    13. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    14. Shoya Ishimaru, 2024. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 505-520, March.
    15. Andrew Chesher & Adam M. Rosen, 2021. "Counterfactual Worlds," Annals of Economics and Statistics, GENES, issue 142, pages 311-335.
    16. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    17. Chiappori, Pierre-Andre & Komunjer, Ivana, 2008. "Correct Specification and Identification of Nonparametric Transformation Models," University of California at San Diego, Economics Working Paper Series qt4v12m2rg, Department of Economics, UC San Diego.
    18. Kim Kyoo il & Petrin Amil, 2022. "A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 91-125, January.
    19. Irz, Xavier & Mazzocchi, Mario & Réquillart, Vincent & Soler, Louis-Georges, 2015. "Research in Food Economics: past trends and new challenges," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 96(01), pages 187-237, March.
    20. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.

    More about this item

    Keywords

    Consumer/Household Economics; Demand and Price Analysis; Food Consumption/Nutrition/Food Safety; Research Methods/ Statistical Methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:169811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.