IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124801.html
   My bibliography  Save this paper

The Impacts of Climate Change on Agricultural Farm Profits in the U.S

Author

Listed:
  • Lee, Jaehyuk
  • Nadolnyak, Denis A.

Abstract

Global warming has been an issue lately in many aspects because it has been in increasing trend since 1980s. This paper estimates the climate change effects on U.S. agriculture using the pooled cross-section farm profit model. The data are mainly based on the annual Agricultural Resource Management Survey (ARMS) from USDA for the time period between 2000 and 2009 in the 48 contiguous States. For climate measure, growing season drought indices (the Palmer Drought Severity Index (PDSI) and Crop Moisture Index (CMI)) are applied to the analysis and both indices have a negative relationship with temperature. The estimates indicate that one unit increase in PDSI (CMI) leads to 5.5% (13.9%), 4% (9%), and 5% (14%) increase in farm profits for all farms, crop farms, and livestock farms. This paper provides several contributions to the literature. First, the data set is very rare and unique national survey that provides an individual farm level observation. Therefore, it gives more detailed farm structure and financial information for the analysis compared to other studies. Second, drought indices (PDSI and CMI) are used for estimating the impact of weather on farm profits while temperature, precipitation, and growing degree-days are typical weather variables in literatures.

Suggested Citation

  • Lee, Jaehyuk & Nadolnyak, Denis A., 2012. "The Impacts of Climate Change on Agricultural Farm Profits in the U.S," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124801, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124801
    DOI: 10.22004/ag.econ.124801
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124801/files/Lee.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    2. Mendelsohn, Robert & Dinar, Ariel, 1999. "Climate Change, Agriculture, and Developing Countries: Does Adaptation Matter?," The World Bank Research Observer, World Bank, vol. 14(2), pages 277-293, August.
    3. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    4. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    5. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    6. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    7. Huang, Haixiao & Khanna, Madhu, 2010. "An Econometric Analysis of U.S. Crop Yield and Cropland Acreage: Implications for the Impact of Climate Change," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61527, Agricultural and Applied Economics Association.
    8. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    9. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Yan & Cai, Ximing & Zhu, Tingju & Ringler, Claudia, 2016. "Drought frequency change: An assessment in northern India plains," Agricultural Water Management, Elsevier, vol. 176(C), pages 111-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    2. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    3. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    4. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    5. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    6. Jianhong E. Mu & Benjamin M. Sleeter & John T. Abatzoglou & John M. Antle, 2017. "Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios," Climatic Change, Springer, vol. 144(2), pages 329-345, September.
    7. Fisher, Anthony, 2014. "Climate Science and Climate Economics," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt746627gz, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    9. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    10. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    11. Fisher, A. C & Le, P. V, 2014. "Climate Policy: Science, Economics, and Extremes," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6tj3j4jb, Department of Agricultural & Resource Economics, UC Berkeley.
    12. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    13. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    14. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    15. Massetti, Emanuele & Mendelsohn, Robert, 2017. "Do Temperature Thresholds Threaten American Farmland?," EIA: Climate Change: Economic Impacts and Adaptation 263482, Fondazione Eni Enrico Mattei (FEEM).
    16. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    18. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    19. Allan, Corey & Kerr, Suzi, 2013. "Examining Patterns in and Drivers of Rural Land Values," 2013 Conference, August 28-30, 2013, Christchurch, New Zealand 160191, New Zealand Agricultural and Resource Economics Society.
    20. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.