IDEAS home Printed from https://ideas.repec.org/p/ags/aaea11/103633.html
   My bibliography  Save this paper

Nonpoint Source Abatement Costs in the Kentucky River Watershed

Author

Listed:
  • Liu, Zheng
  • Schieffer, Jack
  • Hu, Wuyang
  • Pagoulatos, Angelos

Abstract

A growing share of water pollution in the U.S. can be attributed to nonpoint sources (USEPA 2002). Some of this trend can be attributed to declining point source (PS) emissions as a result of regulation under the Clean Water Act (CWA). However, fertilizer-intensive practices used to improve agricultural productivity over recent decades have also increased nitrate loads and resulted in water quality impairments. Nonpoint source (NPS) pollution from agricultural practices is generally exempt from federal regulation. However, some voluntary programs allow point sources subject to the CWA’s effluent limitations to meet their standards by purchasing offset credits reflecting reductions in NPS discharges to the same waters (USEPA 2004). Such water quality trading (WQT) programs have been implemented in a number of states to reduce pollution abatement costs (Breetz et al 2004). In this setting, NPS supply pollution abatement when they implement best management practices (BMP) that reduce nutrient loads, and the cost of BMPs form a supply curve for credits. WQT programs are supported by the EPA as an important means for efficiently pursuing water quality goals (USEPA 2003a). Among the BMPs available for water quality management, riparian buffer strips have proven effective in mitigating the movement of nutrients and other pollutants into surface waters (Qiu et al 2006). Estimates of riparian buffer costs would be valuable for developing policy related to WQT and other conservation programs. This paper estimates the annual costs of buffer strips in six counties in the Lower Kentucky River Basin, as part of a project evaluating the feasibility of WQT programs in that area.

Suggested Citation

  • Liu, Zheng & Schieffer, Jack & Hu, Wuyang & Pagoulatos, Angelos, 2011. "Nonpoint Source Abatement Costs in the Kentucky River Watershed," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103633, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea11:103633
    DOI: 10.22004/ag.econ.103633
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/103633/files/Riparian_AAEA%202011%20Paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.103633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David C. Roberts & Christopher D. Clark & Burton C. English & William M. Park & Roland K. Roberts, 2009. "Estimating Annualized Riparian Buffer Costs for the Harpeth River Watershed," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(4), pages 894-913.
    2. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    2. Roy, René & Baker, Laurie & Thomassin, Paul J., 2013. "Estimating the Cost of Agricultural Pollution Abatement: Establishing Beneficial Management Practices in the Bras d’Henri Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150956, Agricultural and Applied Economics Association.
    3. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    4. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    5. Sergey S. Rabotyagov & Adriana M. Valcu & Catherine L. Kling, 2014. "Reversing Property Rights: Practice-Based Approaches for Controlling Agricultural Nonpoint-source Water Pollution When Emissions Aggregate Nonlinearly," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(2), pages 397-419.
    6. Simon Anastasiadis & Marie-Laure Nauleau & Suzi Kerr & Tim Cox & Kit Rutherford, 2011. "Does Complex Hydrology Require Complex Water Quality Policy? NManager Simulations for Lake Rotorua," Working Papers 11_14, Motu Economic and Public Policy Research.
    7. Santosh R. Ghimire & Adam C. Nayak & Joel Corona & Rajbir Parmar & Raghavan Srinivasan & Katie Mendoza & John M. Johnston, 2022. "Holistic Sustainability Assessment of Riparian Buffer Designs: Evaluation of Alternative Buffer Policy Scenarios Integrating Stream Water Quality and Costs," Sustainability, MDPI, vol. 14(19), pages 1-33, September.
    8. Yiyu Feng & Ming Chang & Erga Luo & Jing Liu, 2023. "Has Property Rights Reform of China’s Farmland Water Facilities Improved Farmers’ Irrigation Efficiency?—Evidence from a Typical Reform Pilot in China’s Yunnan Province," Agriculture, MDPI, vol. 13(2), pages 1-27, January.
    9. Estay, Manuel & Stranlund, John K., 2022. "Entry, location, and optimal environmental policies," Resource and Energy Economics, Elsevier, vol. 70(C).
    10. Catherine L. Kling, 2011. "Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 297-309.
    11. Feng, Hongli & Jha, Manoj K. & Gassman, Philip W., 2006. "Allocating Nutrient Load Reduction across a Watershed: Implications of Different Principles," 2006 Annual meeting, July 23-26, Long Beach, CA 21131, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Hongli Feng & Manoj Jha & Phil Gassman, 2009. "The Allocation of Nutrient Load Reduction across a Watershed: Assessing Delivery Coefficients as an Implementation Tool," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 183-204.
    13. Baomin Dong & Debing Ni & Yuntong Wang, 2012. "Sharing a Polluted River Network," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 367-387, November.
    14. Aaron M. Cook & James S. Shortle, 2022. "Pollutant Trading with Transport Time Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 355-382, June.
    15. Quinn, Nigel W.T., 2011. "Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia," Agricultural Water Management, Elsevier, vol. 98(6), pages 930-940, April.
    16. Hansen, Line Block & Termansen, Mette & Hasler, Berit, 2017. "Effectiveness Of Markets In Nitrogen Abatement: A Danish Case Study," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260887, European Association of Agricultural Economists.
    17. James Shortle & Richard D. Horan, 2013. "Policy Instruments for Water Quality Protection," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 111-138, June.
    18. Wang, Zhiyu, 2018. "Permit trading with flow pollution and stock pollution," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 118-132.
    19. Elizabeth A. Wilman, 2013. "Instruments for Forest Habitat Connectivity," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 6(1), January.
    20. Boisvert, Richard N. & Poe, Gregory L. & Sado, Yukako, 2007. "Selected Economic Aspects of Water Quality Trading: A Primer and Interpretive Literature Review," EB Series 121835, Cornell University, Department of Applied Economics and Management.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea11:103633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.