IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i7p2125-2136.html
   My bibliography  Save this article

Waste Load Allocation in Rivers using Fallback Bargaining

Author

Listed:
  • Najmeh Mahjouri
  • Mohammad Bizhani-Manzar

Abstract

In this paper, bargaining process between different stakeholders involved in a waste load allocation problem is simulated using the Fallback Bargaining (FB) concept. The paper considers two main parties in a waste load allocation problem. On the one hand, there are wastewater dischargers intending to minimize their treatment costs and on the other hand, there is an environmental protection agency which monitors the river water quality at a checkpoint downstream of the location of dischargers. In this paper, different alternatives which are combinations of dischargers’ treatment scenarios are defined. A water quality simulation model is utilized to estimate the concentration of the water quality indicator along the river based on a selected alternative. If the concentration of water quality indicator in the selected checkpoint violates the water quality standards, a penalty function is used to calculate the amount of penalty assigned to dischargers. The allocated cost to each discharger is computed considering his treatment scenario as well as the penalty allocated to him. Two kinds of Fallback bargaining procedure termed as Unanimity Fallback Bargaining (UFB) and Fallback bargaining with Impasse (FBI), which both aim at minimizing the maximum dissatisfaction of bargainers in a negotiation problem, are utilized for finding a Compromise Set (CS) of alternatives. In this paper, the best alternative (alternatives) among CS members is (are) selected using a social choice theory namely Condorcet winner. The results of these two approaches are compared and the final alternative is selected which shows the initial Tradable Discharge Permits (TDPs) allocated to dischargers. Finally, in order to decrease the total allocated cost to dischargers, initial allocated TDPs are exchanged between them using the Extended Trading Ratio System (ETRS) developed by Mesbah et al. (Environ Model Software 24:238–246, 2009 ). The applicability and efficiency of the proposed methodology is investigated by applying it to a case study of the Zarjub River in the northern part of Iran. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Najmeh Mahjouri & Mohammad Bizhani-Manzar, 2013. "Waste Load Allocation in Rivers using Fallback Bargaining," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2125-2136, May.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2125-2136
    DOI: 10.1007/s11269-013-0279-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0279-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0279-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi Zhang & Guoli Wang & Yong Peng & Guolei Tang & Guohua Liang, 2012. "A Negotiation-Based Multi-Objective, Multi-Party Decision-Making Model for Inter-Basin Water Transfer Scheme Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4029-4038, November.
    2. Mohammad Nikoo & Reza Kerachian & Akbar Karimi, 2012. "A Nonlinear Interval Model for Water and Waste Load Allocation in River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2911-2926, August.
    3. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    4. Majid Sheikhmohammady & D. Marc Kilgour & Keith W. Hipel, 2010. "Modeling the Caspian Sea Negotiations," Group Decision and Negotiation, Springer, vol. 19(2), pages 149-168, March.
    5. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadine Wittmann, 2014. "A Microeconomic Perspective on Water Resources Management: Analyzing the Effects on Optimal Land Rents Along a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1309-1325, March.
    2. Sarita Gajbhiye Meshram & Maryam Adhami & Ozgur Kisi & Chandrashekhar Meshram & Pham Anh Duc & Khaled Mohamed Khedher, 2021. "Identification of Critical Watershed for Soil Conservation Using Game Theory-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3105-3120, August.
    3. Sareh S. Naserizade & Mohammad Reza Nikoo & Hossein Montaseri & Mohammad Reza Alizadeh, 2021. "A Hybrid Fuzzy-Probabilistic Bargaining Approach for Multi-objective Optimization of Contamination Warning Sensors in Water Distribution Systems," Group Decision and Negotiation, Springer, vol. 30(3), pages 641-663, June.
    4. Mohammad Reza Nikoo & Pouyan Hatami Bahman Beiglou & Najmeh Mahjouri, 2016. "Optimizing Multiple-Pollutant Waste Load Allocation in Rivers: An Interval Parameter Game Theoretic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4201-4220, September.
    5. Mohammad Reza Alizadeh & Mohammad Reza Nikoo & Gholam Reza Rakhshandehroo, 2017. "Developing a Multi-Objective Conflict-Resolution Model for Optimal Groundwater Management Based on Fallback Bargaining Models and Social Choice Rules: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1457-1472, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nikoo & Reza Kerachian & Hamed Poorsepahy-Samian, 2012. "An Interval Parameter Model for Cooperative Inter-Basin Water Resources Allocation Considering the Water Quality Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3329-3343, September.
    2. Mohammad Reza Nikoo & Pouyan Hatami Bahman Beiglou & Najmeh Mahjouri, 2016. "Optimizing Multiple-Pollutant Waste Load Allocation in Rivers: An Interval Parameter Game Theoretic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4201-4220, September.
    3. Hamed Poorsepahy-Samian & Reza Kerachian & Mohammad Nikoo, 2012. "Water and Pollution Discharge Permit Allocation to Agricultural Zones: Application of Game Theory and Min-Max Regret Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4241-4257, November.
    4. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    5. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    6. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    7. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    8. Yizhong Chen & Li He & Hongwei Lu & Jing Li & Lixia Ren, 2018. "Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3135-3153, July.
    9. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    10. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    11. Mehrdad Ghorbani Mooselu & Mohammad Reza Nikoo & Nooshin Bakhtiari Rayani & Azizallah Izady, 2019. "Fuzzy Multi-Objective Simulation-Optimization of Stepped Spillways Considering Flood Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2261-2275, May.
    12. Catherine L. Kling, 2011. "Economic Incentives to Improve Water Quality in Agricultural Landscapes: Some New Variations on Old Ideas," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 297-309.
    13. S. Jamshid Mousavi & Nasrin Rafiee Anzab & Bentolhoda Asl-Rousta & Joong Hoon Kim, 2017. "Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3445-3464, September.
    14. Baomin Dong & Debing Ni & Yuntong Wang, 2012. "Sharing a Polluted River Network," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 367-387, November.
    15. Quinn, Nigel W.T., 2011. "Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia," Agricultural Water Management, Elsevier, vol. 98(6), pages 930-940, April.
    16. Liu, Zheng & Schieffer, Jack & Hu, Wuyang & Pagoulatos, Angelos, 2011. "Nonpoint Source Abatement Costs in the Kentucky River Watershed," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103633, Agricultural and Applied Economics Association.
    17. Ben Li & Guangming Tan & Gang Chen, 2016. "Generalized Uncooperative Planar Game Theory Model for Water Distribution in Transboundary Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 225-241, January.
    18. R. Hadded & I. Nouiri & O. Alshihabi & J. Maßmann & M. Huber & A. Laghouane & H. Yahiaoui & J. Tarhouni, 2013. "A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1981-2000, May.
    19. John Tisdell & Daniel Clowes, 2008. "The problem of uncertain nonpoint pollution credit production in point and nonpoint emission trading markets," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 9(1), pages 25-42, March.
    20. Sergey S. Rabotyagov & Adriana M. Valcu & Catherine L. Kling, 2014. "Reversing Property Rights: Practice-Based Approaches for Controlling Agricultural Nonpoint-source Water Pollution When Emissions Aggregate Nonlinearly," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(2), pages 397-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2125-2136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.