IDEAS home Printed from https://ideas.repec.org/p/ags/aaea10/60744.html
   My bibliography  Save this paper

Long Term Versus Temporary Certified Emission Reductions in Forest Carbon-Sequestration Programs

Author

Listed:
  • Galinato, Gregmar I.
  • Olanie, Aaron
  • Uchida, Shinsuke
  • Yoder, Jonathan K.

Abstract

Under the Clean Development Mechanism (CDM) of the Kyoto Protocol, forest projects can receive returns for carbon sequestration via two credit instruments: temporary (tCERs) or long-term certified emission reductions (lCERs). This article develops a theoretical model of optimal harvesting strategies that compares private optimal harvest decision under these two instruments. We find that risk neutral landowners are likely to prefer instituting lCERs over tCERs to maximize surplus. A particular type of early harvest penalty implemented under the lCERs is critical in determining the length of rotation intervals and the carbon credit supply. When this penalty is an increasing function of the difference in biomass before and after harvesting across verification periods, the landowner may choose longer or shorter rotation intervals compared to the Faustmann rotation. The resulting supply curve may have a backward bending region over a range of carbon prices.

Suggested Citation

  • Galinato, Gregmar I. & Olanie, Aaron & Uchida, Shinsuke & Yoder, Jonathan K., 2010. "Long Term Versus Temporary Certified Emission Reductions in Forest Carbon-Sequestration Programs," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 60744, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea10:60744
    DOI: 10.22004/ag.econ.60744
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/60744/files/10369a.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.60744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael Dutschke & Bernhard Schlamadinger & Jenny L.P. Wong & Michael Rumberg, 2005. "Value and risks of expiring carbon credits from afforestation and reforestation projects under the CDM," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 109-125, January.
    2. M. Germain & A. Magnus & V. Steenberghe, 2007. "How to design and use the clean development mechanism under the Kyoto Protocol? A developing country perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 13-30, September.
    3. Spring, Daniel & Kennedy, John O.S. & Mac Nally, Ralph, 2005. "Optimal management of a flammable forest providing timber and carbon sequestration benefits: an Australian case study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(3), pages 1-18.
    4. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    5. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    6. Graeme Guthrie & Dinesh Kumareswaran, 2009. "Carbon Subsidies, Taxes and Optimal Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 275-293, June.
    7. Gregmar I. Galinato & Shinsuke Uchida, 2011. "The Effect of Temporary Certified Emission Reductions on Forest Rotations and Carbon Supply," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 59(1), pages 145-164, March.
    8. Sedjo, Roger A., 1999. "Potential for Carbon Forest Plantations in Marginal Timber Forests: The Case of Patagonia, Argentina," Discussion Papers 10661, Resources for the Future.
    9. Heng‐Chi Lee & Bruce A. McCarl & Dhazn Gillig, 2005. "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 343-357, December.
    10. William D. Nordhaus, 1991. "The Cost of Slowing Climate Change: a Survey," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-66.
    11. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    12. Olschewski, Roland & Benítez, Pablo C. & de Koning, G.H.J. & Schlichter, Tomás, 2005. "How attractive are forest carbon sinks? Economic insights into supply and demand of Certified Emission Reductions," Journal of Forest Economics, Elsevier, vol. 11(2), pages 77-94, September.
    13. Gregmar Galinato & Shinsuke Uchida, 2010. "Evaluating Temporary Certified Emission Reductions in Reforestation and Afforestation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(1), pages 111-133, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    2. Zhang, Yue-Jun & Liu, Jing-Yue & Woodward, Richard T., 2023. "Has Chinese Certified Emission Reduction trading reduced rural poverty in China?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(03), April.
    3. Hou, Guolong & Delang, Claudio O. & Lu, Xixi & Olschewski, Roland, 2020. "Optimizing rotation periods of forest plantations: The effects of carbon accounting regimes," Forest Policy and Economics, Elsevier, vol. 118(C).
    4. Juutinen, Artti & Ahtikoski, Anssi & Lehtonen, Mika & Mäkipää, Raisa & Ollikainen, Markku, 2018. "The impact of a short-term carbon payment scheme on forest management," Forest Policy and Economics, Elsevier, vol. 90(C), pages 115-127.
    5. Mandaloufas, Melissa & Lamas, Wendell de Queiroz & Brown, Scott & Irizarry Quintero, Anamari, 2015. "Energy balance analysis of the Brazilian alcohol for flex fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 403-414.
    6. Cacho, Oscar J. & Lipper, Leslie & Moss, Jonathan, 2013. "Transaction costs of carbon offset projects: A comparative study," Ecological Economics, Elsevier, vol. 88(C), pages 232-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juutinen, Artti & Ahtikoski, Anssi & Lehtonen, Mika & Mäkipää, Raisa & Ollikainen, Markku, 2018. "The impact of a short-term carbon payment scheme on forest management," Forest Policy and Economics, Elsevier, vol. 90(C), pages 115-127.
    2. Gregmar Galinato & Shinsuke Uchida, 2010. "Evaluating Temporary Certified Emission Reductions in Reforestation and Afforestation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(1), pages 111-133, May.
    3. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    4. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    5. Gulati, Sumeet & Vercammen, James, 2005. "The Optimal Length of an Agricultural Carbon Contract," Working Papers 37027, University of Victoria, Resource Economics and Policy.
    6. Hou, Guolong & Delang, Claudio O. & Lu, Xixi & Olschewski, Roland, 2020. "Optimizing rotation periods of forest plantations: The effects of carbon accounting regimes," Forest Policy and Economics, Elsevier, vol. 118(C).
    7. Robert N. Stavins, 1998. "A Methodological Investigation of the Costs of Carbon Sequestration," Journal of Applied Economics, Taylor & Francis Journals, vol. 1(2), pages 231-277, November.
    8. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    9. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    10. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123665, International Association of Agricultural Economists.
    11. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    12. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    13. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.
    14. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    15. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    16. Sedjo, Roger, 2001. "Forest Carbon Sequestration: Some Issues for Forest Investments," RFF Working Paper Series dp-01-34, Resources for the Future.
    17. Sumeet Gulati & James Vercammen, 2005. "The Optimal Length of an Agricultural Carbon Contract," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 359-373, December.
    18. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    19. Tassone, Valentina C. & Wesseler, Justus & Nesci, Francesco S., 2004. "Diverging incentives for afforestation from carbon sequestration: an economic analysis of the EU afforestation program in the south of Italy," Forest Policy and Economics, Elsevier, vol. 6(6), pages 567-578, October.
    20. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.

    More about this item

    Keywords

    Environmental Economics and Policy; Land Economics/Use; Resource /Energy Economics and Policy;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea10:60744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.