IDEAS home Printed from https://ideas.repec.org/p/aah/create/2022-12.html
   My bibliography  Save this paper

Estimation of continuous-time linear DSGE models from discrete-time measurements

Author

Listed:
  • Bent Jesper Christensen

    (Aarhus University, Dale T. Mortensen Center, Danish Finance Institute, CREATES)

  • Luca Neri

    (University of Bologna, Dale T. Mortensen Center, Ca’ Foscari University of Venice, CREATES)

  • Juan Carlos Parra-Alvarez

    (Aarhus University, Dale T. Mortensen Center, Danish Finance Institute and CREATES)

Abstract

We provide a general state space framework for estimation of the parameters of continuous-time linear DSGE models from data that are only available at discrete points in time. Our approach relies on the exact discrete-time representation of the equilibrium dynamics, which allows avoiding discretization errors. Using the Kalman filter, we construct the exact likelihood for data sampled either as stocks or flows, and estimate frequency-invariant parameters by maximum likelihood. We address the aliasing problem arising in multivariate settings and provide conditions for precluding it, which is required for local identification of the parameters in the continuous-time economic model. We recover the unobserved structural shocks at measurement times from the reduced-form residuals in the state space representation by exploiting the underlying causal links imposed by the economic theory and the information content of the discrete-time observations. We illustrate our approach using an off-the-shelf real business cycle model. We conduct extensive Monte Carlo experiments to study the finite sample properties of the estimator based on the exact discrete-time representation, and show they are superior to those based on a naive Euler-Maruyama discretization of the economic model. Finally, we estimate the model using postwar U.S. macroeconomic data, and offer examples of applications of our approach, including historical shock decomposition at different frequencies, and estimation based on mixed-frequency data. JEL classification: C13, C32, C68, E13, E32, J22 Key words: DSGE models, continuous time, exact discrete-time representation, stock and flow variables, Kalman filter, maximum likelihood, aliasing, structural shocks

Suggested Citation

  • Bent Jesper Christensen & Luca Neri & Juan Carlos Parra-Alvarez, 2022. "Estimation of continuous-time linear DSGE models from discrete-time measurements," CREATES Research Papers 2022-12, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2022-12
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/22/rp22_12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    3. Peter A. Zadrozny, 1990. "Forecasting U.S. GNP at monthly intervals with an estimated bivariate time series model," Economic Review, Federal Reserve Bank of Atlanta, issue Nov, pages 2-15.
    4. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-387, March.
    5. Hansen, Gary D., 1997. "Technical progress and aggregate fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1005-1023, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
    2. Dupaigne, M. & Fève, P. & Matheron, J., 2005. "Technology Shock and Employment: Do We Really Need DSGE Models with a Fall in Hours?," Working papers 124, Banque de France.
    3. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    4. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    5. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    6. Hansen, G.D. & Ohanian, L.E., 2016. "Neoclassical Models in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2043-2130, Elsevier.
    7. Smith, Gregor W. & Zin, Stanley E., 1997. "Real business-cycle realizations," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 243-280, December.
    8. Lees, Kirdan & Matheson, Troy, 2007. "Mind your ps and qs! Improving ARMA forecasts with RBC priors," Economics Letters, Elsevier, vol. 96(2), pages 275-281, August.
    9. Eichenbaum, Martin, 1991. "Real business-cycle theory : Wisdom or whimsy?," Journal of Economic Dynamics and Control, Elsevier, vol. 15(4), pages 607-626, October.
    10. Finn E. Kydland & Edward C. Prescott, 1991. "Hours and Employment Variation in Business-Cycle Theory," International Economic Association Series, in: Niels Thygesen & Kumaraswamy Velupillai & Stefano Zambelli (ed.), Business Cycles, chapter 5, pages 107-134, Palgrave Macmillan.
    11. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    12. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Generalized exogenous processes in DSGE: A Bayesian approach," SFB 649 Discussion Papers 2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2017. "On weak identification in structural VARMA models," Economics Letters, Elsevier, vol. 156(C), pages 1-6.
    14. Bragagnolo, Cassiano & Barros, Geraldo Sant'Ana de Camargo, 2013. "Ciclos econômicos na agricultura brasileira," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(2), June.
    15. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    16. Shen, Wenyi, 2015. "News, disaster risk, and time-varying uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 459-479.
    17. Ireland, Peter N., 2001. "Technology shocks and the business cycle: On empirical investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(5), pages 703-719, May.
    18. Thomai Filippeli, 2011. "Theoretical Priors for BVAR Models & Quasi-Bayesian DSGE Model Estimation," 2011 Meeting Papers 396, Society for Economic Dynamics.
    19. Gary D. Hansen & Edward C. Prescott, 1992. "Recursive methods for computing equilibria of business cycle models," Discussion Paper / Institute for Empirical Macroeconomics 36, Federal Reserve Bank of Minneapolis.
    20. repec:fgv:epgrbe:v:67:n:2:a:1 is not listed on IDEAS
    21. D.S. Poskitt & Wenying Yao, 2012. "VAR Modeling and Business Cycle Analysis: A Taxonomy of Errors," Monash Econometrics and Business Statistics Working Papers 11/12, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    dsge models; continuous time; exact discrete-time representation; stock and flow variables; kalman filter; maximum likelihood; aliasing; structural shocks;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2022-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.