IDEAS home Printed from https://ideas.repec.org/p/nzb/nzbdps/2005-02.html
   My bibliography  Save this paper

Mind your Ps and Qs! Improving ARMA forecasts with RBC priors

Author

Abstract

We utilise prior information from a simple RBC model to improve ARMA forecasts of post-war US GDP. We develop three alternative ARMA forecasting processes that use varying degrees of information from the Campbell (1994) flexible labour model. Directly calibrating the model produces poor forecasting performance whereas a model that uses a Bayesian framework to take the model to the data, yields forecasting performance comparable to a purely statistical ARMA process. A final model that uses theory only to restrict the order of the ARMA process (the ps and qs), but that estimates the ARMA parameters using maximum likelihood, yields improved forecasting performance.

Suggested Citation

  • Kirdan Lees & Troy Matheson, 2005. "Mind your Ps and Qs! Improving ARMA forecasts with RBC priors," Reserve Bank of New Zealand Discussion Paper Series DP2005/02, Reserve Bank of New Zealand.
  • Handle: RePEc:nzb:nzbdps:2005/02
    as

    Download full text from publisher

    File URL: http://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Discussion%20papers/2005/dp05-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    3. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Martin Lettau, 2003. "Inspecting The Mechanism: Closed-Form Solutions For Asset Prices In Real Business Cycle Models," Economic Journal, Royal Economic Society, vol. 113(489), pages 550-575, July.
    6. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    7. Thomas Lubik & Frank Schorfheide, 2006. "A Bayesian Look at New Open Economy Macroeconomics," NBER Chapters, in: NBER Macroeconomics Annual 2005, Volume 20, pages 313-382, National Bureau of Economic Research, Inc.
    8. Christiano, Lawrence J, 1992. "Searching for a Break in GNP," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 237-250, July.
    9. Campbell, John Y & Ludvigson, Sydney, 2001. "Elasticities of Substitution in Real Business Cycle Models with Home Protection," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 33(4), pages 847-875, November.
    10. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    11. Canova, Fabio, 1998. "Detrending and business cycle facts: A user's guide," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 533-540, May.
    12. Ludvigson, Sydney, 1996. "The macroeconomic effects of government debt in a stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 38(1), pages 25-45, August.
    13. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
    14. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    15. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    18. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    19. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
    20. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    21. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    22. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    23. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    24. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    25. Greenwood, Jeremy & Hercowitz, Zvi & Huffman, Gregory W, 1988. "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, American Economic Association, vol. 78(3), pages 402-417, June.
    26. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    27. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
    28. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    29. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    30. Kim, Jinill, 2005. "Does utility curvature matter for indeterminacy?," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 421-429, August.
    31. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    4. James B. Bullard & John Duffy, 2004. "Learning and structural change in macroeconomic data," Working Papers 2004-016, Federal Reserve Bank of St. Louis.
    5. Paccagnini, Alessia, 2010. "DSGE Model Validation in a Bayesian Framework: an Assessment," MPRA Paper 24509, University Library of Munich, Germany.
    6. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    7. Eric Schaling & Guangling Dave Liu & Rangan Gupta, 2007. "Forecasting the South African Economy: A DSGE-VAR Approach," Working Papers 051, Economic Research Southern Africa.
    8. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    9. Thomai Filippeli, 2011. "Theoretical Priors for BVAR Models & Quasi-Bayesian DSGE Model Estimation," 2011 Meeting Papers 396, Society for Economic Dynamics.
    10. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2018. "DSGE-based Priors for BVARs & Quasi-Bayesian DSGE Estimation," Cardiff Economics Working Papers E2018/5, Cardiff University, Cardiff Business School, Economics Section.
    11. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    12. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    13. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    14. Knüppel, Malte, 2014. "Can Capacity Constraints Explain Asymmetries Of The Business Cycle?," Macroeconomic Dynamics, Cambridge University Press, vol. 18(1), pages 65-92, January.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Zbigniew Kuchta & Katarzyna Piłat, 2010. "Zastosowanie modelu realnego cyklu koniunkturalnego Hansena do gospodarki Polski," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 11-12, pages 19-39.
    17. Accolley, Delali, 2016. "Accounting for Business Cycles in Canada: I. The Role of Supply-Side Factors," MPRA Paper 69856, University Library of Munich, Germany.
    18. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2020. "DSGE-based priors for BVARs and quasi-Bayesian DSGE estimation," Econometrics and Statistics, Elsevier, vol. 16(C), pages 1-27.
    19. Dilip Nachane, 2017. "Dynamic Stochastic General Equilibrium (DSGE) Modelling :Theory And Practice," Working Papers id:11699, eSocialSciences.
    20. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2005/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reserve Bank of New Zealand Knowledge Centre (email available below). General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.