IDEAS home Printed from https://ideas.repec.org/h/zbw/hwwich/281014.html
   My bibliography  Save this book chapter

Implizite Motive in der politischen Kommunikation

In: Neuvermessung der Datenökonomie

Author

Listed:
  • Scheffer, Niklas
  • Sturm, Silke
  • Islam, Zahurul

Abstract

Lange galt in der politischen Ökonomie der Homo Oeconomicus als theoretischer Ausgangspunkt. Demnach orientieren sich Wähler:innen bei ihrer Stimmabgabe an der ideologischen Distanz zwischen sich selbst und den Parteien. Der geringste Abstand im euklidischen Raum entscheidet über die Allokation der Stimmen und den Wahlerfolg. Psychologische Beiträge zeigen, dass die Rationalitätsannahmen des Homo Oeconomicus gerade in der politischen Entscheidungsbildung nicht haltbar sind. So stellen etwa die Darstellung und Präsentation von Informationen einen relevanten Faktor in der Entscheidungsfindung dar. Schnellenbach und Schuber stellen die wachsende Bedeutung verhaltensökonomischer und psychologischer Ansätze in der politischen Ökonomie heraus. Rein rationale Kosten-Nutzen-Erwägungen können das Kommunikations- und Wahlverhalten nicht erklären, emotionale oder scheinbar "irrationale" Bestandteile scheinen einen erheblichen Einfluss auf Wähler:innen und Politiker:innen zu haben. Der vorliegende Beitrag konzentriert sich auf diesen unbewussteren Aspekt. Soziale Medien bieten die einmalige Möglichkeit, die Interaktion von Parteien und Wähler:innen zu analysieren. Es werden mit über maschinelles Lernen trainierten, Algorithmen mehr als 30.0000 Facebook-Posts der im deutschen Bundestag vertretenen Parteien hinsichtlich der drei grundlegenden emotionalen beziehungsweise impliziten Motivdimensionen Macht, Bindung und Leistung analysiert. Der Einbezug von Motivmustern erlaubt es, konkrete Rückschlüsse auf eine politische Orientierung der Handelnden zu treffen, die rational nicht erklärbar erscheint, sondern eher emotional bedingt wirkt. So haben Studien von Winter ergeben, dass ein bestimmtes Motivmuster - Macht hoch und Bindung tief - Krisen oder sogar kriegerische Auseinandersetzungen, die allen rationalen Kosten- Nutzen-Erwägungen widersprechen, ankündigt und damit prognostizierbar macht. Es ist von Erkenntnisinteresse, wie Parteien und Politiker:innen mit ihren Wähler:innen abseits rationaler Logik kommunizieren und ob sich emotional verankerte Motivmuster bestimmten Parteien zuordnen lassen. Neben den Motivdimensionen werden die Mitteilungen nach den grundlegenden Themenschwerpunkten innerparteilicher Kommunikation und politikrelevanter Kommunikation auf der Basis eines unüberwachten Topic-Modells unterschieden. Ziel der Analyse ist es, durch die Kombination der Messmethoden zu interpretierbaren und für weitere Untersuchungen relevanten Ergebnissen zu kommen. Im folgenden Beitrag werden die "großen drei" impliziten Motive dargestellt und ihre Messung erläutert. Danach werden der Algorithmus und das maschinelle Lernen vorgestellt. Im nachfolgenden Abschnitt werden die zugrundeliegenden Daten und die Hypothesen beschrieben. Der anschließende Abschnitt widmet sich den Interpretationsmöglichkeiten und der politischen Relevanz der Ergebnisse. Der Beitrag schließt mit einer Diskussion.

Suggested Citation

  • Scheffer, Niklas & Sturm, Silke & Islam, Zahurul, 2021. "Implizite Motive in der politischen Kommunikation," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 173-197, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwich:281014
    DOI: 10.15460/hup.254.1929
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/281014/1/1876300744.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15460/hup.254.1929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl Brenke & Alexander S. Kritikos, 2017. "Wählerstruktur im Wandel," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 84(29), pages 595-606.
    2. Schnellenbach, Jan & Schubert, Christian, 2015. "Behavioral political economy: A survey," European Journal of Political Economy, Elsevier, vol. 40(PB), pages 395-417.
    3. Roland Bénabou & Jean Tirole, 2016. "Mindful Economics: The Production, Consumption, and Value of Beliefs," Journal of Economic Perspectives, American Economic Association, vol. 30(3), pages 141-164, Summer.
    4. Tyler Cowen, 2005. "Self-deception as the root of political failure," Public Choice, Springer, vol. 124(3), pages 437-451, September.
    5. Matthew Rabin & Joel L. Schrag, 1999. "First Impressions Matter: A Model of Confirmatory Bias," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 37-82.
    6. Tversky, Amos & Kahneman, Daniel, 1986. "Rational Choice and the Framing of Decisions," The Journal of Business, University of Chicago Press, vol. 59(4), pages 251-278, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Straubhaar, Thomas (ed.), 2021. "Neuvermessung der Datenökonomie," Edition HWWI, Hamburg Institute of International Economics (HWWI), volume 6, number 6.
    2. Sturm, Silke, 2019. "Political Competition: How to Measure Party Strategy in Direct Voter Communication using Social Media Data?," Hamburg Discussion Papers in International Economics 1, University of Hamburg, Department of Economics.
    3. Schnellenbach, Jan & Schubert, Christian, 2015. "Behavioral political economy: A survey," European Journal of Political Economy, Elsevier, vol. 40(PB), pages 395-417.
    4. Ester Faia & Andreas Fuster & Vincenzo Pezone & Basit Zafar, 2024. "Biases in Information Selection and Processing: Survey Evidence from the Pandemic," The Review of Economics and Statistics, MIT Press, vol. 106(3), pages 829-847, May.
    5. Banerjee, Ritwik & Gupta, Nabanita Datta & Villeval, Marie Claire, 2020. "Feedback spillovers across tasks, self-confidence and competitiveness," Games and Economic Behavior, Elsevier, vol. 123(C), pages 127-170.
    6. Johannes Binswanger & Anja Garbely & Manuel Oechslin, 2023. "Investor beliefs about transformative innovations under uncertainty," Economica, London School of Economics and Political Science, vol. 90(360), pages 1119-1144, October.
    7. Kai Barron, 2021. "Belief updating: does the ‘good-news, bad-news’ asymmetry extend to purely financial domains?," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 31-58, March.
    8. Stone, Daniel F., 2019. "“Unmotivated bias” and partisan hostility: Empirical evidence," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 79(C), pages 12-26.
    9. Jean-Charles Fiolet & Carl Haas & Keith Hipel, 2016. "Risk-chasing behaviour in on-site construction decisions," Construction Management and Economics, Taylor & Francis Journals, vol. 34(12), pages 845-858, December.
    10. Daniel J. Benjamin, 2018. "Errors in Probabilistic Reasoning and Judgment Biases," NBER Working Papers 25200, National Bureau of Economic Research, Inc.
    11. Nils Grevenbrock & Max Groneck & Alexander Ludwig & Alexander Zimper, 2021. "Cognition, Optimism, And The Formation Of Age‐Dependent Survival Beliefs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 887-918, May.
    12. Jan Schnellenbach & Christian Schubert, 2019. "A note on the behavioral political economy of innovation policy," Journal of Evolutionary Economics, Springer, vol. 29(5), pages 1399-1414, November.
    13. Duarte Gonc{c}alves & Jonathan Libgober & Jack Willis, 2021. "Retractions: Updating from Complex Information," Papers 2106.11433, arXiv.org, revised Jun 2024.
    14. Isaac Loh & Gregory Phelan, 2019. "Dimensionality And Disagreement: Asymptotic Belief Divergence In Response To Common Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 60(4), pages 1861-1876, November.
    15. Le Yaouanq, Yves, 2023. "A model of voting with motivated beliefs," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 394-408.
    16. López-Pérez, Raúl & Rodriguez-Moral, Antonio & Vorsatz, Marc, 2021. "Simplified mental representations as a cause of overprecision," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 92(C).
    17. Kuehnhanss, Colin R. & Heyndels, Bruno & Hilken, Katharina, 2015. "Choice in politics: Equivalency framing in economic policy decisions and the influence of expertise," European Journal of Political Economy, Elsevier, vol. 40(PB), pages 360-374.
    18. Stone, Daniel, 2018. ""Unmotivated Bias" and Partisan Hostility: Empirical Evidence," SocArXiv hr5ba, Center for Open Science.
    19. David Dequech, 2008. "Varieties of uncertainty: a survey of the economic literature," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807211223070, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    20. Lennart Erixon & Louise Johannesson, 2015. "Is the psychology of high profits detrimental to industrial renewal? Experimental evidence for the theory of transformation pressure," Journal of Evolutionary Economics, Springer, vol. 25(2), pages 475-511, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwich:281014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.