IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/228927.html
   My bibliography  Save this book chapter

Evaluation of data quality in dimensioning capacity

In: Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 29

Author

Listed:
  • Vliegen, Lea
  • Moroff, Nikolas Ulrich
  • Riehl, Katharina

Abstract

Purpose: This paper aims to give an overview of the current state of research on measuring data quality. The identified methods will be applied to the task of dimensioning capacities (e.g. warehouse capacities) in the field of supply chain design (SCD) to further increase trust in decision support and to make full use of the potential of analytics. Methodology: The data requirements for SCD decisions are identified through the combination of findings of a research project and additional literature research. Moreover, an overview on measuring data quality will be given according to a literature study. Based on the required data, the applicability of methods to measure data quality will be analyzed and an application concept developed. Findings: The quality of decisions can only be as good as the quality of the data they are based on. The article provides an overview of methods for evaluating datasets and develops an approach for measuring and evaluating data quality for the specific case of capacities in the SCD process. Originality: The adaption of approaches of measuring data quality to the problem of dimensioning capacities in SCD ensures an adequate evaluation of whether the data fulfills the required quality for the planning tasks.

Suggested Citation

  • Vliegen, Lea & Moroff, Nikolas Ulrich & Riehl, Katharina, 2020. "Evaluation of data quality in dimensioning capacity," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 355-394, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:228927
    DOI: 10.15480/882.3136
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/228927/1/hicl-2020-29-355.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernhard Fleischmann & Achim Koberstein, 2015. "Strategic Network Design," Springer Texts in Business and Economics, in: Hartmut Stadtler & Christoph Kilger & Herbert Meyr (ed.), Supply Chain Management and Advanced Planning, edition 5, chapter 6, pages 107-123, Springer.
    2. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    3. Hsu, Chaug-Ing & Li, Hui-Chieh, 2009. "An integrated plant capacity and production planning model for high-tech manufacturing firms with economies of scale," International Journal of Production Economics, Elsevier, vol. 118(2), pages 486-500, April.
    4. Jeusfeld, M.A. & Quix, C. & Jarke, M., 1998. "Design and analysis of quality information for data warehouses," Other publications TiSEM fde64335-eb29-4c82-b7c8-5, Tilburg University, School of Economics and Management.
    5. Prat, Nicolas & Madnick, Stuart E., 2008. "Measuring Data Believability: A Provenance Approach," Working papers 40086, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    7. Schreiber, Lucas, 2019. "Optimization and simulation for sustainable supply chain design," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 271-298, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    8. Fattahi, Mohammad & Mahootchi, Masoud & Govindan, Kannan & Moattar Husseini, Seyed Mohammad, 2015. "Dynamic supply chain network design with capacity planning and multi-period pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 169-202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    2. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    3. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    4. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2015. "Uncertainty propagation in a supply chain or supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 185-206.
    5. Ahmad Rezaee & Farzad Dehghanian & Behnam Fahimnia & Benita Beamon, 2017. "Green supply chain network design with stochastic demand and carbon price," Annals of Operations Research, Springer, vol. 250(2), pages 463-485, March.
    6. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    7. Iman Kazemian & Samin Aref, 2016. "Multi-echelon Supply Chain Flexibility Enhancement Through Detecting Bottlenecks," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(4), pages 357-372, December.
    8. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    9. Nezamoddini, Nasim & Gholami, Amirhosein & Aqlan, Faisal, 2020. "A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks," International Journal of Production Economics, Elsevier, vol. 225(C).
    10. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
    11. Attari, Mahdi Yousefi Nejad & Torkayesh, Ali Ebadi, 2018. "Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry," Operations Research Perspectives, Elsevier, vol. 5(C), pages 371-382.
    12. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    13. Hsu, Chaug-Ing & Li, Hui-Chieh, 2011. "Reliability evaluation and adjustment of supply chain network design with demand fluctuations," International Journal of Production Economics, Elsevier, vol. 132(1), pages 131-145, July.
    14. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    15. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    16. Qinglong Gou & Liang Liang & Zhimin Huang & Susan X. Li, 2017. "Editor’s Introduction," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 899-905, July.
    17. Matei, Ion & Gueye, Assane & Baras, John S., 2015. "Flow control in time-varying, random supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 311-330.
    18. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.
    19. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    20. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:228927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.