IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i2p758-770.html
   My bibliography  Save this article

Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics

Author

Listed:
  • Ivanov, Dmitry
  • Pavlov, Alexander
  • Sokolov, Boris

Abstract

In this paper, an original approach to formulate and solve a multi-period and multi-commodity distribution (re)planning problem for a multi-stage centralized upstream network with structure dynamics considerations is proposed. First original idea of this study is description of the supply chain as a non-stationary dynamic system along with a linear programming (LP) model. This allows distribute design and control variables between dynamic and static models. Second original idea is to transit from the classical LP model to maximal flow problem by excluding demand constraint from the LP model. The first contribution of this study is multi-objective problem formulation that opens additional perspectives for decision-making beyond cost-oriented optimization. Second, the maximal flow LP model allows the finding of a feasible solution even for unbalanced supply and demand cases without relaxing hard capacity constraints. Third, this allows improve service level at the strategic inventory holding point. Fourth, structure dynamics and ripple effect can be taken into account. Structure dynamics allows considering different execution scenarios and developing suggestions on replanning in the case of disturbances. The graph of structural reliability allows identify the optimistic and pessimistic scenarios. These scenarios are used for computational experiments with the developed model and the industrial models. With the developed model, the practical issues of scenario-based risk identification strategy and operational distribution planning can be interlinked.

Suggested Citation

  • Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:758-770
    DOI: 10.1016/j.ejor.2014.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714001386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    2. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    3. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    4. Ivanov, Dmitry & Sokolov, Boris & Kaeschel, Joachim, 2010. "A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations," European Journal of Operational Research, Elsevier, vol. 200(2), pages 409-420, January.
    5. Kunnumkal, Sumit & Topaloglu, Huseyin, 2011. "Linear programming based decomposition methods for inventory distribution systems," European Journal of Operational Research, Elsevier, vol. 211(2), pages 282-297, June.
    6. Mula, Josefa & Peidro, David & Díaz-Madroñero, Manuel & Vicens, Eduardo, 2010. "Mathematical programming models for supply chain production and transport planning," European Journal of Operational Research, Elsevier, vol. 204(3), pages 377-390, August.
    7. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    8. Qu, Wendy W. & Bookbinder, James H. & Iyogun, Paul, 1999. "An integrated inventory-transportation system with modified periodic policy for multiple products," European Journal of Operational Research, Elsevier, vol. 115(2), pages 254-269, June.
    9. Qi, Lian, 2013. "A continuous-review inventory model with random disruptions at the primary supplier," European Journal of Operational Research, Elsevier, vol. 225(1), pages 59-74.
    10. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    11. Das, Kanchan, 2011. "Integrating effective flexibility measures into a strategic supply chain planning model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 170-183, May.
    12. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    13. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    14. Costantino, Nicola & Dotoli, Mariagrazia & Falagario, Marco & Fanti, Maria Pia & Mangini, Agostino Marcello, 2012. "A model for supply management of agile manufacturing supply chains," International Journal of Production Economics, Elsevier, vol. 135(1), pages 451-457.
    15. Yimin Wang & Wendell Gilland & Brian Tomlin, 2010. "Mitigating Supply Risk: Dual Sourcing or Process Improvement?," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 489-510, September.
    16. Amiri, Ali, 2006. "Designing a distribution network in a supply chain system: Formulation and efficient solution procedure," European Journal of Operational Research, Elsevier, vol. 171(2), pages 567-576, June.
    17. Lu, Mengshi & Huang, Simin & Shen, Zuo-Jun Max, 2011. "Product substitution and dual sourcing under random supply failures," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1251-1265, September.
    18. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    19. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    20. Li, Jianxiang & Chu, Feng & Chen, Haoxun, 2011. "A solution approach to the inventory routing problem in a three-level distribution system," European Journal of Operational Research, Elsevier, vol. 210(3), pages 736-744, May.
    21. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    22. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    23. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    24. Sang-Hyun Kim & Brian Tomlin, 2013. "Guilt by Association: Strategic Failure Prevention and Recovery Capacity Investments," Management Science, INFORMS, vol. 59(7), pages 1631-1649, July.
    25. Manzini, Riccardo & Bindi, Filippo, 2009. "Strategic design and operational management optimization of a multi stage physical distribution system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 915-936, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    2. Ivanov, Dmitry & Pavlov, Alexander & Pavlov, Dmitry & Sokolov, Boris, 2017. "Minimization of disruption-related return flows in the supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 503-513.
    3. Yılmaz, Ömer Faruk & Yeni, Fatma Betül & Gürsoy Yılmaz, Beren & Özçelik, Gökhan, 2023. "An optimization-based methodology equipped with lean tools to strengthen medical supply chain resilience during a pandemic: A case study from Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    4. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    5. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Dmitry Ivanov & Boris Sokolov & Inna Solovyeva & Alexandre Dolgui & Ferry Jie, 2016. "Dynamic recovery policies for time-critical supply chains under conditions of ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7245-7258, December.
    7. Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
    8. Sinha, Priyank & Kumar, Sameer & Prakash, Surya, 2020. "Measuring and mitigating the effects of cost disturbance propagation in multi-echelon apparel supply chains," European Journal of Operational Research, Elsevier, vol. 282(1), pages 148-160.
    9. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    10. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    11. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    12. Sanjoy Kumar Paul & Ruhul Sarker & Daryl Essam & Paul Tae-Woo Lee, 2019. "A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain," Annals of Operations Research, Springer, vol. 280(1), pages 299-335, September.
    13. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    14. Shraddha Mishra & Surya Prakash Singh, 2022. "Designing dynamic reverse logistics network for post-sale service," Annals of Operations Research, Springer, vol. 310(1), pages 89-118, March.
    15. Chih-Hung Hsu & Xu He & Ting-Yi Zhang & An-Yuan Chang & Wan-Ling Liu & Zhi-Qiang Lin, 2022. "Enhancing Supply Chain Agility with Industry 4.0 Enablers to Mitigate Ripple Effects Based on Integrated QFD-MCDM: An Empirical Study of New Energy Materials Manufacturers," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    16. Spiegler, Virginia L.M. & Naim, Mohamed M., 2017. "Investigating sustained oscillations in nonlinear production and inventory control models," European Journal of Operational Research, Elsevier, vol. 261(2), pages 572-583.
    17. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    18. Dai, B. & Chen, H.X. & Li, Y.A. & Zhang, Y.D. & Wang, X.Q. & Deng, Y.M., 2021. "Inventory replenishment planning of a distribution system with storage capacity constraints and multi-channel order fulfilment," Omega, Elsevier, vol. 102(C).
    19. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    20. Sayan Chakraborty & Akshat Jain & S. P. Sarmah, 2022. "An integrated mathematical model based on grey optimal ranking for supplier selection considering pandemic situation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1613-1648, December.
    21. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    22. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    2. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    3. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    4. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
    5. Dmitry Ivanov & Boris Sokolov & Inna Solovyeva & Alexandre Dolgui & Ferry Jie, 2016. "Dynamic recovery policies for time-critical supply chains under conditions of ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7245-7258, December.
    6. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    7. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    8. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    9. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    10. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    11. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    12. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    13. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    14. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    15. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    16. Yang, Yuefeng & Xu, Xuerong, 2015. "Post-disaster grain supply chain resilience with government aid," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 139-159.
    17. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    18. Sheu, Jiuh-Biing, 2016. "Supplier hoarding, government intervention, and timing for post-disaster crop supply chain recovery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 134-160.
    19. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.
    20. Tordecilla-Madera, Rafael & Polo, Andrés & Muñoz, Dairo & González-Rodríguez, Leonardo, 2017. "A robust design for a Colombian dairy cooperative's milk storage and refrigeration logistics system using binary programming," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 710-720.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:758-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.