IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v77y2015icp311-330.html
   My bibliography  Save this article

Flow control in time-varying, random supply chains

Author

Listed:
  • Matei, Ion
  • Gueye, Assane
  • Baras, John S.

Abstract

This paper focuses on the logistics aspect of supply chain management. It proposes a randomized flow management algorithm for a time-varying, random, supply chain network. A constrained stochastic optimization problem that maximizes the profit function in terms of the long-run, time-average of the flows in the supply chain is formulated. The algorithm is distributed and based on queueing theory and stochastic Lyapunov analysis concepts. The long-run, time averages of the flows generated by the algorithm can get arbitrarily close to the solution of the aforementioned optimization problem. In support of the theoretical results, numerical simulations are also presented.

Suggested Citation

  • Matei, Ion & Gueye, Assane & Baras, John S., 2015. "Flow control in time-varying, random supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 311-330.
  • Handle: RePEc:eee:transe:v:77:y:2015:i:c:p:311-330
    DOI: 10.1016/j.tre.2015.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515000071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian M. Lewis & Alan L. Erera & Maciek A. Nowak & White Chelsea C., 2013. "Managing Inventory in Global Supply Chains Facing Port-of-Entry Disruption Risks," Transportation Science, INFORMS, vol. 47(2), pages 162-180, May.
    2. Hsu, Chaug-Ing & Li, Hui-Chieh, 2011. "Reliability evaluation and adjustment of supply chain network design with demand fluctuations," International Journal of Production Economics, Elsevier, vol. 132(1), pages 131-145, July.
    3. Nagurney, Anna, 2010. "Supply chain network design under profit maximization and oligopolistic competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 281-294, May.
    4. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    5. Aikens, C. H., 1985. "Facility location models for distribution planning," European Journal of Operational Research, Elsevier, vol. 22(3), pages 263-279, December.
    6. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    7. Vidal, Carlos J. & Goetschalckx, Marc, 2001. "A global supply chain model with transfer pricing and transportation cost allocation," European Journal of Operational Research, Elsevier, vol. 129(1), pages 134-158, February.
    8. June Dong & Ding Zhang & Anna Nagurney, 2004. "Supply chain supernetworks with random demands," Chapters, in: Der-Horng Lee (ed.), Urban and Regional Transportation Modeling, chapter 16, Edward Elgar Publishing.
    9. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    2. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2015. "Uncertainty propagation in a supply chain or supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 185-206.
    3. Gao, Long, 2015. "Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management," European Journal of Operational Research, Elsevier, vol. 245(1), pages 133-145.
    4. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    5. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    6. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    7. Attari, Mahdi Yousefi Nejad & Torkayesh, Ali Ebadi, 2018. "Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry," Operations Research Perspectives, Elsevier, vol. 5(C), pages 371-382.
    8. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    9. Cordeau, Jean-François & Laporte, Gilbert & Pasin, Federico, 2008. "An iterated local search heuristic for the logistics network design problem with single assignment," International Journal of Production Economics, Elsevier, vol. 113(2), pages 626-640, June.
    10. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    11. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    12. Iman Kazemian & Samin Aref, 2016. "Multi-echelon Supply Chain Flexibility Enhancement Through Detecting Bottlenecks," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(4), pages 357-372, December.
    13. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    14. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    15. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    16. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    17. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    18. Nezamoddini, Nasim & Gholami, Amirhosein & Aqlan, Faisal, 2020. "A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks," International Journal of Production Economics, Elsevier, vol. 225(C).
    19. Alikhani, Reza & Torabi, S.Ali & Altay, Nezih, 2021. "Retail supply chain network design with concurrent resilience capabilities," International Journal of Production Economics, Elsevier, vol. 234(C).
    20. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:77:y:2015:i:c:p:311-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.