IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209389.html
   My bibliography  Save this book chapter

Modelling of spare parts storage strategies for offshore wind

In: Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 28

Author

Listed:
  • Jäger-Roschko, Moritz
  • Weigell, Jürgen
  • Jahn, Carlos

Abstract

Purpose: The production costs of offshore wind energy are currently very high compared to other means of energy production. During the operational phase of an offshore wind park 17% of the operational costs are logistics cost. To reduce the costs, innovative strategies have to be implemented, like improved spare part strategies. Methodology: In this paper, an agent-based model for the Operation and Maintenance (O&M) supply chain of offshore wind farms is developed analyzing if the storage of spare parts of different offshore wind parts at a central shared warehouse is beneficial. Findings: Shared storage units for two offshore wind farms serviced from different harbours only yield larger profits for large spare parts transported by a crane vessel. For all other components, rapid access and the resulting higher availability of the wind turbines outweigh the cost savings realized by a central warehouse. Originality: The developed model is unique as it comprises two storage levels, two wind parks, and different means of transportation for small, medium, and large spare parts on water and land. Until now, no comparable research exists determining the optimal storage level for spare parts in shared storage infrastructure.

Suggested Citation

  • Jäger-Roschko, Moritz & Weigell, Jürgen & Jahn, Carlos, 2019. "Modelling of spare parts storage strategies for offshore wind," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 83-108, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209389
    DOI: 10.15480/882.2492
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209389/1/hicl-2019-28-083.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.2492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin, Tongdan & Tian, Zhigang & Xie, Min, 2015. "A game-theoretical approach for optimizing maintenance, spares and service capacity in performance contracting," International Journal of Production Economics, Elsevier, vol. 161(C), pages 31-43.
    2. Marita Balks & Philipp Breloh, 2014. "Auswirkungen des neuen Erneuerbare-Energien-Gesetzes auf Offshore-Wind-Investitionen," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 94(7), pages 520-523, July.
    3. Thomas Poulsen & Charlotte Bay Hasager & Christian Munk Jensen, 2017. "The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistic," Energies, MDPI, vol. 10(4), pages 1-28, April.
    4. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    4. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    6. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    7. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Qin, Xuwei & Shao, Lusheng & Jiang, Zhong-Zhong, 2020. "Contract design for equipment after-sales service with business interruption insurance," European Journal of Operational Research, Elsevier, vol. 284(1), pages 176-187.
    9. Liu, Lujie & Yang, Jun & Kong, Xuefeng & Xiao, Yiyong, 2022. "Multi-mission selective maintenance and repairpersons assignment problem with stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    11. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Ba, Kader & Dellagi, Sofiene & Rezg, Nidhal & Erray, Walid, 2016. "Joint optimization of preventive maintenance and spare parts inventory for an optimal production plan with consideration of CO2 emission," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 172-186.
    13. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    14. Yujie Zhang & Yukun Wang & Xiaopeng Li & Yiliu Liu & Weizheng Gao, 2024. "Condition-based maintenance optimization for deteriorating systems considering performance-based contracting and destructive inspections," Journal of Risk and Reliability, , vol. 238(2), pages 247-259, April.
    15. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    16. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    17. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    18. Zhu, Ying & Xia, Tangbin & Hong, Ge & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Collaborative maintenance service and component sales under coopetition patterns for OEMs challenged by booming used-component sales," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    20. Yang Lu & Liping Sun & Yanzhuo Xue, 2021. "Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm," Energies, MDPI, vol. 14(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.