IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2190-d165033.html
   My bibliography  Save this article

Decision Support Tool for Offshore Wind Farm Vessel Routing under Uncertainty

Author

Listed:
  • Rafael Dawid

    (Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK)

  • David McMillan

    (Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK)

  • Matthew Revie

    (Department of Management Science, University of Strathclyde, Glasgow G1 1XW, UK)

Abstract

This paper for the first time captures the impact of uncertain maintenance action times on vessel routing for realistic offshore wind farm problems. A novel methodology is presented to incorporate uncertainties, e.g., on the expected maintenance duration, into the decision-making process. Users specify the extent to which these unknown elements impact the suggested vessel routing strategy. If uncertainties are present, the tool outputs multiple vessel routing policies with varying likelihoods of success. To demonstrate the tool’s capabilities, two case studies were presented. Firstly, simulations based on synthetic data illustrate that in a scenario with uncertainties, the cost-optimal solution is not necessarily the best choice for operators. Including uncertainties when calculating the vessel routing policy led to a 14% increase in the number of wind turbines maintained at the end of the day. Secondly, the tool was applied to a real-life scenario based on an offshore wind farm in collaboration with a United Kingdom (UK) operator. The results showed that the assignment of vessels to turbines generated by the tool matched the policy chosen by wind farm operators. By producing a range of policies for consideration, this tool provided operators with a structured and transparent method to assess trade-offs and justify decisions.

Suggested Citation

  • Rafael Dawid & David McMillan & Matthew Revie, 2018. "Decision Support Tool for Offshore Wind Farm Vessel Routing under Uncertainty," Energies, MDPI, vol. 11(9), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2190-:d:165033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongtao Lei & Gilbert Laporte & Bo Guo, 2012. "A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 99-118, April.
    2. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    3. Andrés Gómez & Ricardo Mariño & Raha Akhavan-Tabatabaei & Andrés L. Medaglia & Jorge E. Mendoza, 2016. "On Modeling Stochastic Travel and Service Times in Vehicle Routing," Transportation Science, INFORMS, vol. 50(2), pages 627-641, May.
    4. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.
    5. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    6. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.
    7. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    8. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Łebkowski, 2020. "Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms," Energies, MDPI, vol. 13(6), pages 1-23, March.
    2. de Simón-Martín, Miguel & Ciria-Garcés, Tomás & Rosales-Asensio, Enrique & González-Martínez, Alberto, 2022. "Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    2. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    3. Elgesem, Aurora Smith & Skogen, Eline Sophie & Wang, Xin & Fagerholt, Kjetil, 2018. "A traveling salesman problem with pickups and deliveries and stochastic travel times: An application from chemical shipping," European Journal of Operational Research, Elsevier, vol. 269(3), pages 844-859.
    4. Irawan, Chandra Ade & Eskandarpour, Majid & Ouelhadj, Djamila & Jones, Dylan, 2021. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 289(3), pages 912-926.
    5. Chandra Ade Irawan & Majid Eskandarpour & Djamila Ouelhadj & Dylan Jones, 2019. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," Post-Print hal-02509382, HAL.
    6. Ramon Faganello Fachini & Vinícius Amaral Armentano & Franklina Maria Bragion Toledo, 2022. "A Granular Local Search Matheuristic for a Heterogeneous Fleet Vehicle Routing Problem with Stochastic Travel Times," Networks and Spatial Economics, Springer, vol. 22(1), pages 33-64, March.
    7. Anastasios D. Vareias & Panagiotis P. Repoussis & Panagiotis P. Repoussi, 2019. "Assessing Customer Service Reliability in Route Planning with Self-Imposed Time Windows and Stochastic Travel Times," Service Science, INFORMS, vol. 53(1), pages 256-281, February.
    8. Chiang, Wen-Chyuan & Russell, Robert & Xu, Xiaojing & Zepeda, David, 2009. "A simulation/metaheuristic approach to newspaper production and distribution supply chain problems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 752-767, October.
    9. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    10. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    11. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    12. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    13. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    14. Huang, Kuancheng & Wu, Kun-Feng & Ardiansyah, Muhammad Nashir, 2019. "A stochastic dairy transportation problem considering collection and delivery phases," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 325-338.
    15. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    17. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    18. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
    19. Avraham, Edison & Raviv, Tal, 2020. "The data-driven time-dependent traveling salesperson problem," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 25-40.
    20. Evers, Lanah & Barros, Ana Isabel & Monsuur, Herman & Wagelmans, Albert, 2014. "Online stochastic UAV mission planning with time windows and time-sensitive targets," European Journal of Operational Research, Elsevier, vol. 238(1), pages 348-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2190-:d:165033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.