IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320160000037011.html
   My bibliography  Save this book chapter

Bayesian Spatial Bivariate Panel Probit Estimation

In: Spatial Econometrics: Qualitative and Limited Dependent Variables

Author

Listed:
  • Badi H. Baltagi
  • Peter H. Egger
  • Michaela Kesina

Abstract

This paper formulates and analyzes Bayesian model variants for the analysis of systems of spatial panel data with binary-dependent variables. The paper focuses on cases where latent variables of cross-sectional units in an equation of the system contemporaneously depend on the values of the same and, eventually, other latent variables of other cross-sectional units. Moreover, the paper discusses cases where time-invariant effects are exogenous versus endogenous. Such models may have numerous applications in industrial economics, public economics, or international economics. The paper illustrates that the performance of Bayesian estimation methods for such models is supportive of their use with even relatively small panel data sets.

Suggested Citation

  • Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2016. "Bayesian Spatial Bivariate Panel Probit Estimation," Advances in Econometrics, in: Spatial Econometrics: Qualitative and Limited Dependent Variables, volume 37, pages 119-144, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320160000037011
    DOI: 10.1108/S0731-905320160000037011
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000037011/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000037011/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320160000037011
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000037011/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320160000037011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    4. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    5. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    6. Peter Egger & Georg Wamser, 2013. "Multiple faces of preferential market access: their causes and consequences [Gravity with gravitas: a solution to the border puzzle]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 28(73), pages 143-187.
    7. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    8. Greene, W.H., 1996. "Marginal Effects in the Bivariate Probit Model," Working Papers 96-11, New York University, Leonard N. Stern School of Business, Department of Economics.
    9. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    10. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    11. Munkin, Murat K. & Trivedi, Pravin K., 2008. "Bayesian analysis of the ordered probit model with endogenous selection," Journal of Econometrics, Elsevier, vol. 143(2), pages 334-348, April.
    12. Klier, Thomas & McMillen, Daniel P, 2008. "Clustering of Auto Supplier Plants in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 460-471.
    13. Greene, William H., 1984. "Estimation of the correlation coefficient in a bivariate probit model using the method of moments," Economics Letters, Elsevier, vol. 16(3-4), pages 285-291.
    14. Kurt J. Beron & Wim P. M. Vijverberg, 2004. "Probit in a Spatial Context: A Monte Carlo Analysis," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 8, pages 169-195, Springer.
    15. James P. LeSage & R. Kelley Pace & Nina Lam & Richard Campanella & Xingjian Liu, 2011. "New Orleans business recovery in the aftermath of Hurricane Katrina," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 1007-1027, October.
    16. Wooldridge, Jeffrey M., 1995. "Selection corrections for panel data models under conditional mean independence assumptions," Journal of Econometrics, Elsevier, vol. 68(1), pages 115-132, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    2. Baltagi, Badi H. & Egger, Peter H. & Kesina, Michaela, 2017. "Determinants of firm-level domestic sales and exports with spillovers: Evidence from China," Journal of Econometrics, Elsevier, vol. 199(2), pages 184-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    2. Anna Gloria Billé & Samantha Leorato, 2017. "Quasi-ML estimation, Marginal Effects and Asymptotics for Spatial Autoregressive Nonlinear Models," BEMPS - Bozen Economics & Management Paper Series BEMPS44, Faculty of Economics and Management at the Free University of Bozen.
    3. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    4. Egger Peter & Wamser Georg, 2013. "Effects of the Endogenous Scope of Preferentialism on International Goods Trade," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 13(2), pages 709-731, July.
    5. Mondal, Aupal & Bhat, Chandra R., 2022. "A spatial rank-ordered probit model with an application to travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 374-393.
    6. Georg Wamser, 2011. "Foreign (in)direct investment and corporate taxation," Canadian Journal of Economics, Canadian Economics Association, vol. 44(4), pages 1497-1524, November.
    7. Sabine Herrmann & Dubravko Mihaljek, 2010. "The determinants of cross-border bank flows to emerging markets: new empirical evidence on the spread of financial crises," BIS Working Papers 315, Bank for International Settlements.
    8. Karen Miranda & Oscar Martínez Ibáñez & Miguel Manjón Antolín, 2015. "Estimating Individual Effects and their Spatial Spillovers in Linear Panel Data Models," Post-Print hal-01430809, HAL.
    9. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    10. Elena Lagomarsino & Alessandro Spiganti, 2020. "No gain in pain: psychological well-being, participation, and wages in the BHPS," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(9), pages 1375-1389, December.
    11. Terence C. Cheng & Guyonne Kalb & Anthony Scott, 2018. "Public, private or both? Analyzing factors influencing the labour supply of medical specialists," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(2), pages 660-692, May.
    12. Federico Revelli, 2013. "Tax Mix Corners and Other Kinks," Journal of Law and Economics, University of Chicago Press, vol. 56(3), pages 741-776.
    13. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    14. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    15. Sarafidis, Vasilis & Yamagata, Takashi, 2010. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors under Cross-sectional Dependence," MPRA Paper 25182, University Library of Munich, Germany.
    16. H. Allen Klaiber & Klaus Salhofer & Stanley R. Thompson, 2017. "Capitalisation of the SPS into Agricultural Land Rental Prices under Harmonisation of Payments," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 710-726, September.
    17. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2014. "Panel Data Gravity Models of International Trade," CESifo Working Paper Series 4616, CESifo.
    18. Lung‐fei Lee & Jihai Yu, 2012. "Spatial Panels: Random Components Versus Fixed Effects," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1369-1412, November.
    19. Moro, D. & Guastella, G. & Sckokai, P. & Veneziani, M., 2013. "The Capitalization of Area Payment into Land Rental Prices: Micro-evidence from Italy," 2013 Second Congress, June 6-7, 2013, Parma, Italy 149746, Italian Association of Agricultural and Applied Economics (AIEAA).
    20. repec:dgr:rugsom:13006-eef is not listed on IDEAS
    21. Baltagi, Badi H. & Egger, Peter H. & Kesina, Michaela, 2017. "Determinants of firm-level domestic sales and exports with spillovers: Evidence from China," Journal of Econometrics, Elsevier, vol. 199(2), pages 184-201.

    More about this item

    Keywords

    Spatial econometrics; panel probit; multivariate probit; C11; C31; C35;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320160000037011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.