IDEAS home Printed from https://ideas.repec.org/h/bis/bisifc/59-10.html
   My bibliography  Save this book chapter

gingado: a machine learning library focused on economics and finance

In: Data science in central banking: applications and tools

Author

Listed:
  • Douglas Kiarelly Godoy de Araujo

Abstract

gingado is an open source Python library that offers a variety of convenience functions and objects to support usage of machine learning in economics research. It is designed to be compatible with widely used machine learning libraries. gingado facilitates augmenting user datasets with relevant data directly obtained from official sources by leveraging the SDMX data and metadata sharing protocol. The library also offers a benchmarking object that creates a random forest with a reasonably good performance out-of-the-box and, if provided with candidate models, retains the one with the best performance. gingado also includes methods to help with machine learning model documentation, including ethical considerations. Further, gingado provides a flexible simulatation of panel datasets with a variety of non-linear causal treatment effects, to support causal model prototyping and benchmarking. The library is under active development and new functionalities are periodically added or improved.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Douglas Kiarelly Godoy de Araujo, 2023. "gingado: a machine learning library focused on economics and finance," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
  • Handle: RePEc:bis:bisifc:59-10
    as

    Download full text from publisher

    File URL: https://www.bis.org/ifc/publ/ifcb59_10_rh.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    2. Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2018. "Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," NBER Working Papers 24678, National Bureau of Economic Research, Inc.
    5. Anja Lambrecht & Catherine Tucker, 2019. "Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads," Management Science, INFORMS, vol. 65(7), pages 2966-2981, July.
    6. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    7. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    8. Òscar Jordà & Björn Richter & Moritz Schularick & Alan M Taylor, 2021. "Bank Capital Redux: Solvency, Liquidity, and Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 260-286.
    9. Emanuel Kohlscheen, 2021. "What does machine learning say about the drivers of inflation?," BIS Working Papers 980, Bank for International Settlements.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    12. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    13. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    14. Liming Brotcke, 2022. "Time to Assess Bias in Machine Learning Models for Credit Decisions," JRFM, MDPI, vol. 15(4), pages 1-10, April.
    15. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    16. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    17. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    18. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    19. Leonardo N. Ferreira, 2021. "Forecasting with VAR-teXt and DFM-teXt Models:exploring the predictive power of central bank communication," Working Papers Series 559, Central Bank of Brazil, Research Department.
    20. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    2. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2023. "Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data," Econometrica, Econometric Society, vol. 91(6), pages 2125-2154, November.
    3. Grodecka-Messi, Anna & Zhang, Xin, 2023. "Private bank money vs central bank money: A historical lesson for CBDC introduction," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    4. Disa M. Hynsjö & Luca Perdoni, 2024. "Mapping Out Institutional Discrimination: The Economic Effects of Federal “Redlining”," CESifo Working Paper Series 11098, CESifo.
    5. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    6. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    7. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    8. Peter Backus & Thien Nguyen, 2021. "The Effect of the Sex Buyer Law on the Market for Sex, Sexual Health and Sexual Violence," Economics Discussion Paper Series 2106, Economics, The University of Manchester.
    9. Goryunov, Alexander & Ageshina, Elena & Lavrentev, Igor & Peretyatko, Polina, 2023. "Estimating the effect of Russia’s development policy in the Far Eastern region: The synthetic control approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 72, pages 58-72.
    10. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    11. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    12. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    13. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    14. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    15. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    16. Enzo Brox & Riccardo Di Francesco, 2024. "The Cost of Coming Out," Papers 2403.03649, arXiv.org, revised Jun 2024.
    17. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    18. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    19. Thomas Barnebeck Andersen, 2023. "The Cost of a Currency Peg during the Great Recession," Open Economies Review, Springer, vol. 34(2), pages 255-279, April.
    20. Kathleen T. Li & Christophe Van den Bulte, 2023. "Augmented Difference-in-Differences," Marketing Science, INFORMS, vol. 42(4), pages 746-767, July.

    More about this item

    JEL classification:

    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:bisifc:59-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.