IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v91y2023i6p2125-2154.html
   My bibliography  Save this article

Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data

Author

Listed:
  • Dennis Shen
  • Peng Ding
  • Jasjeet Sekhon
  • Bin Yu

Abstract

One dominant approach to evaluate the causal effect of a treatment is through panel data analysis, whereby the behaviors of multiple units are observed over time. The information across time and units motivates two general approaches: (i) horizontal regression (i.e., unconfoundedness), which exploits time series patterns, and (ii) vertical regression (e.g., synthetic controls), which exploits cross‐sectional patterns. Conventional wisdom often considers the two approaches to be different. We establish this position to be partly false for estimation but generally true for inference. In the absence of any assumptions, we show that both approaches yield algebraically equivalent point estimates for several standard estimators. However, the source of randomness assumed by each approach leads to a distinct estimand and quantification of uncertainty even for the same point estimate. This emphasizes that researchers should carefully consider where the randomness stems from in their data, as it has direct implications for the accuracy of inference.

Suggested Citation

  • Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2023. "Same Root Different Leaves: Time Series and Cross‐Sectional Methods in Panel Data," Econometrica, Econometric Society, vol. 91(6), pages 2125-2154, November.
  • Handle: RePEc:wly:emetrp:v:91:y:2023:i:6:p:2125-2154
    DOI: 10.3982/ECTA21248
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA21248
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA21248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
    2. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398, arXiv.org, revised Jul 2023.
    3. Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
    4. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    5. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    6. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    7. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    8. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Jasjeet S. Sekhon & Yotam Shem-Tov, 2021. "Inference on a New Class of Sample Average Treatment Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 798-804, April.
    11. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    12. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    13. Hoff, Peter D., 2017. "Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 186-198.
    14. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    15. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    2. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    3. Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
    4. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    5. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    7. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    8. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398, arXiv.org, revised Jul 2023.
    9. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    10. Ignacio Martinez & Jaume Vives-i-Bastida, 2022. "Bayesian and Frequentist Inference for Synthetic Controls," Papers 2206.01779, arXiv.org, revised Jul 2024.
    11. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
    12. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    13. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    14. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    15. Peter Backus & Thien Nguyen, 2021. "The Effect of the Sex Buyer Law on the Market for Sex, Sexual Health and Sexual Violence," Economics Discussion Paper Series 2106, Economics, The University of Manchester.
    16. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    17. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    18. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    19. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    20. Max Nathan & Henry G. Overman & Capucine Riom & Maria Sanchez-Vidal, 2024. "Multipliers from a major public sector relocation: The BBC moves to Salford," CEP Discussion Papers dp2042, Centre for Economic Performance, LSE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:91:y:2023:i:6:p:2125-2154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.