IDEAS home Printed from https://ideas.repec.org/h/aec/ieed06/06-08.html
   My bibliography  Save this book chapter

La segmentación educativa en Argentina: exploración empírica en base a PISA 2009

In: Investigaciones de Economía de la Educación 6

Author

Listed:
  • Natalia Soledad Kruger

    (Universidad Nacional del Sur-CONICET)

Abstract

Si bien el logro de la equidad en el ámbito educativo ha sido históricamente un objetivo primordial de política a nivel internacional, los resultados del estudio PISA 2009 sugieren que muchos países aún enfrentan grandes desafíos al respecto. Esto es especialmente válido si se adopta la perspectiva de la equidad en la distribución de los recursos, ya que las escuelas que concentran un alumnado de mayor nivel socioeconómico suelen beneficiarse de más y mejores inputs. Tal situación implica que la escolarización no sólo reproduce sino que también amplía las desigualdades sociales de origen. En particular, el sistema educativo argentino adolece de una baja performance promedio, una alta variación de los resultados entre escuelas, y un fuerte impacto del contexto socioeconómico en los mismos. Estos problemas son en parte resultados de la segmentación del sistema, concepto que cobró relevancia en el país durante los años ochenta y que remite tanto a la presencia de circuitos escolares de calidad diferenciada como a la segregación socioeconómica del público al que atienden. El objetivo del presente trabajo es contribuir a la comprensión y al diagnóstico de la relevancia actual de este fenómeno. Para ello se realiza un análisis exploratorio en base a los datos suministrados por la evaluación PISA 2009 a fines de conocer el grado de segmentación educativa existente, evaluando la asociación entre variables representativas de los capitales físico, humano, y social de las escuelas, así como su interacción con las características del alumnado. Se lleva a cabo a su vez un análisis de conglomerados, para visualizar cómo estos diversos factores se agrupan conformando perfiles de escuelas diferenciados. La caracterización de los distintos circuitos educativos e identificación de aquellos segmentos en mayor desventaja puede constituir una herramienta útil para el diseño de políticas en pos de una educación de calidad para todos.

Suggested Citation

  • Natalia Soledad Kruger, 2011. "La segmentación educativa en Argentina: exploración empírica en base a PISA 2009," Investigaciones de Economía de la Educación volume 6, in: Antonio Caparrós Ruiz (ed.), Investigaciones de Economía de la Educación 6, edition 1, volume 6, chapter 8, pages 135-155, Asociación de Economía de la Educación.
  • Handle: RePEc:aec:ieed06:06-08
    as

    Download full text from publisher

    File URL: http://repec.economicsofeducation.com/2011malaga/06-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Cutler & Edward L. Glaeser & Jacob L. Vigdor, 1999. "The Rise and Decline of the American Ghetto," Journal of Political Economy, University of Chicago Press, vol. 107(3), pages 455-506, June.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Rebecca Allen & Anna Vignoles, 2006. "What Should an Index of School Segregation Measure?," CEE Discussion Papers 0060, Centre for the Economics of Education, LSE.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Gibbons & Shqiponja Telhaj, 2007. "Are Schools Drifting Apart? Intake Stratification in English Secondary Schools," Urban Studies, Urban Studies Journal Limited, vol. 44(7), pages 1281-1305, June.
    2. Glitz, Albrecht, 2014. "Ethnic segregation in Germany," Labour Economics, Elsevier, vol. 29(C), pages 28-40.
    3. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    4. Hélène Syed Zwick & S. Ali Shah Syed, 2017. "The polarization impact of the crisis on the Eurozone labour markets: a hierarchical cluster analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 24(7), pages 472-476, April.
    5. Gautier, Pieter & van Vuuren, Aico & Siegmann, Arjen, 2007. "The Effect of the Theo van Gogh Murder on House Prices in Amsterdam," CEPR Discussion Papers 6175, C.E.P.R. Discussion Papers.
    6. Oscar Volij, 2018. "Segregation: theoretical approaches," Chapters, in: Conchita D’Ambrosio (ed.), Handbook of Research on Economic and Social Well-Being, chapter 21, pages 480-503, Edward Elgar Publishing.
    7. Patrick Bayer & Fernando Ferreira & Robert McMillan, 2007. "A Unified Framework for Measuring Preferences for Schools and Neighborhoods," Journal of Political Economy, University of Chicago Press, vol. 115(4), pages 588-638, August.
    8. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    9. Karla Hoff & Arijit Sen, 2005. "Homeownership, Community Interactions, and Segregation," American Economic Review, American Economic Association, vol. 95(4), pages 1167-1189, September.
    10. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    11. Alberto Alesina & Ekaterina Zhuravskaya, 2011. "Segregation and the Quality of Government in a Cross Section of Countries," American Economic Review, American Economic Association, vol. 101(5), pages 1872-1911, August.
    12. Card, David & Rothstein, Jesse, 2007. "Racial segregation and the black-white test score gap," Journal of Public Economics, Elsevier, vol. 91(11-12), pages 2158-2184, December.
    13. Lisa Cook, 2014. "Violence and economic activity: evidence from African American patents, 1870–1940," Journal of Economic Growth, Springer, vol. 19(2), pages 221-257, June.
    14. Pennings, J.S.J. & van Kranenburg, H.L. & Hagedoorn, J., 2005. "Past, present and future of the telecommunications industry," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    15. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
    16. Stephen L. Ross, 2003. "Ségrégation and Racial Preferences: New Theoretical and Empirical Approaches," Annals of Economics and Statistics, GENES, issue 71-72, pages 97-139.
    17. Caroline Méjean & Pauline Macouillard & Sandrine Péneau & Camille Lassale & Serge Hercberg & Katia Castetbon, 2014. "Association of Perception of Front-of-Pack Labels with Dietary, Lifestyle and Health Characteristics," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    18. Constant, Amelie F. & Gataullina, Liliya & Zimmermann, Klaus F., 2009. "Ethnosizing immigrants," Journal of Economic Behavior & Organization, Elsevier, vol. 69(3), pages 274-287, March.
    19. Edward L. Glaeser, 1998. "Are Cities Dying?," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 139-160, Spring.
    20. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.

    More about this item

    Keywords

    equidad; recursos educativos; conglomerados; PISA 2009;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aec:ieed06:06-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Domingo P. Ximénez-de-Embún (email available below). General contact details of provider: https://edirc.repec.org/data/aedeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.