IDEAS home Printed from https://ideas.repec.org/h/aec/ieed05/05-06.html
   My bibliography  Save this book chapter

Heterogeneidad en el desempeño académico de los estudiantes de Argentina: evidencia a partir de regresión por cuantiles

In: Investigaciones de Economía de la Educación 5

Author

Listed:
  • Héctor Ricardo Gertel

    (Universidad Nacional de Córdoba)

  • Roberto Giuliodori

    (Facultad de Ciencias Económicas)

  • María Luz Vera

    (Facultad de Ciencias Económicas)

  • Guadalupe Bastos

    (Facultad de Ciencias Económicas)

  • Sonia Costanzo

    (Facultad de Ciencias Económicas)

Abstract

En Argentina el logro académico de los estudiantes es medido, desde 1995, al finalizar la escuela primaria (12 años de edad, aproximadamente) y la secundaria (17 años, aproximadamente) mediante la aplicación de pruebas estandarizadas nacionales. Este trabajo usa regresión por cuantiles, como lo propone Koenker (1978, 2005), para investigar la heterogeneidad en la relación entre el rendimiento académico de los estudiantes y covariables que reflejan rasgos personales y atributos de familia. Hay motivos importantes que explican por qué los economistas y otros científicos sociales están profundamente interesados en el estudio de la heterogeneidad. La presencia de condiciones de heterogeneidad puede causar serias distorsiones en los resultados de las regresiones que investigan el efecto de factores asociados con la habilidad individual y con las características del hogar. Desde el punto de vista de la familia, el mayor rendimiento en las pruebas puede ser interpretado como resultado de la decisión sobre la escuela a la que envían a los hijos, condicionado a las restricciones asociadas con imperfecciones de mercado. Para el gobierno, la heterogeneidad podría señalar problemas de polarización en la sociedad, aquí el análisis por cuantiles proporcionaría directrices más eficaces para la política educativa que si solo se prestara atención a los efectos promedio. El trabajo analiza el efecto diferenciado que las características personales y del hogar ejercen a lo largo de la distribución condicional de resultados de matemática al finalizar la escuela primaria y secundaria en Argentina en el año 2000. Resultados preliminares indican que: asistir a una escuela de gestión privada posee un efecto positivo alto en el cuantil de notas más bajo y decrece hacia la derecha de la distribución condicional, en ambos niveles educativos. Efectos asociados con el género, la capacidad individual y la localización geográfica de la escuela también son evaluados para los diferentes cuantiles.

Suggested Citation

  • Héctor Ricardo Gertel & Roberto Giuliodori & María Luz Vera & Guadalupe Bastos & Sonia Costanzo, 2010. "Heterogeneidad en el desempeño académico de los estudiantes de Argentina: evidencia a partir de regresión por cuantiles," Investigaciones de Economía de la Educación volume 5, in: María Jesús Mancebón-Torrubia & Domingo P. Ximénez-de-Embún & José María Gómez-Sancho & Gregorio Gim (ed.), Investigaciones de Economía de la Educación 5, edition 1, volume 5, chapter 6, pages 117-138, Asociación de Economía de la Educación.
  • Handle: RePEc:aec:ieed05:05-06
    as

    Download full text from publisher

    File URL: http://repec.economicsofeducation.com/2010zaragoza/05-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bassett, Gilbert W. & Koenker, Roger W., 1986. "Strong Consistency of Regression Quantiles and Related Empirical Processes," Econometric Theory, Cambridge University Press, vol. 2(2), pages 191-201, August.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Martins, Pedro S. & Pereira, Pedro T., 2004. "Does education reduce wage inequality? Quantile regression evidence from 16 countries," Labour Economics, Elsevier, vol. 11(3), pages 355-371, June.
    4. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    5. Javier Alejo, 2006. "Desigualdad Salarial en el Gran Buenos Aires: Una Aplicación de Regresión por Cuantiles en Microdescomposiciones," CEDLAS, Working Papers 0036, CEDLAS, Universidad Nacional de La Plata.
    6. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.
    7. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Manuel del Pozo Segura, 2017. "Has the Gender Wage Gap been Reduced during the 'Peruvian Growth Miracle?' A Distributional Approach," Documentos de Trabajo / Working Papers 2017-442, Departamento de Economía - Pontificia Universidad Católica del Perú.
    2. McMillen, Daniel P., 2008. "Changes in the distribution of house prices over time: Structural characteristics, neighborhood, or coefficients?," Journal of Urban Economics, Elsevier, vol. 64(3), pages 573-589, November.
    3. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    4. Shweta Bahl & Ajay Sharma, 2021. "Education–Occupation Mismatch and Dispersion in Returns to Education: Evidence from India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 251-298, January.
    5. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    6. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    7. Tanya O’Garra & Susana Mourato, 2007. "Public Preferences for Hydrogen Buses: Comparing Interval Data, OLS and Quantile Regression Approaches," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(4), pages 389-411, April.
    8. Wiji Arulampalam & Alison Booth & Mark Bryan, 2010. "Are there asymmetries in the effects of training on the conditional male wage distribution?," Journal of Population Economics, Springer;European Society for Population Economics, vol. 23(1), pages 251-272, January.
    9. Christophe Muller & Christophe J. Nordman, 2008. "Intra-Firm Human Capital Externalities in Tunisia," THEMA Working Papers 2008-38, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    10. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.
    11. Christophe Muller & Christophe Nordman, 2004. "Which Human Capital Matters For Rich And Poor'S Wages: Evidence From Matched Worker-Firm Data From Tunisia," Working Papers. Serie AD 2004-28, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Cristi A. Gleason & Sascha Kieback & Martin Thomsen & Christoph Watrin, 2021. "Monitoring or payroll maximization? What happens when workers enter the boardroom?," Review of Accounting Studies, Springer, vol. 26(3), pages 1046-1087, September.
    13. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    14. Andini, Corrado, 2009. "How Fast Do Wages Adjust to Human-Capital Productivity? Dynamic Panel-Data Evidence from Belgium, Denmark and Finland," IZA Discussion Papers 4583, Institute of Labor Economics (IZA).
    15. Corrado Andini, 2010. "Within-groups wage inequality and schooling: further evidence for Portugal," Applied Economics, Taylor & Francis Journals, vol. 42(28), pages 3685-3691.
    16. Francisca Lívia S. Menezes & Ronaldo A. Arraes & Andrei G. Simonass, 2014. "Earning Differentials By Occupational Categories And Discrimination: Gender, Race And Regions," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 214, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    17. Javier Alejo & Maria Florencia Gabrielli & Walter Sosa-Escudero, 2014. "The Distributive Effects of Education: An Unconditional Quantile Regression Approach," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 29(1), pages 53-76, April.
    18. Paolo Naticchioni & Andrea Ricci & Emiliano Rustichelli, 2007. "Wage Structure, Inequality And Skill-Biased Change: Is Italy An Outlier?," Quaderni del Dipartimento di Economia, Finanza e Statistica 38/2007, Università di Perugia, Dipartimento Economia.
    19. Corrado Andini, 2007. "The total impact of schooling on within-groups wage inequality in Portugal," Applied Economics Letters, Taylor & Francis Journals, vol. 15(2), pages 85-90.
    20. Ainaa, Carmen & Brunetti, Irene & Mussida, Chiara & Scicchitano, Sergio, 2021. "Who lost the most? Distributive effects of COVID-19 pandemic," GLO Discussion Paper Series 829, Global Labor Organization (GLO).

    More about this item

    Keywords

    Regresión por cuantiles; logro académico; calidad educativa; escuela primaria; escuela secundaria; Argentina;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • O54 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Latin America; Caribbean

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aec:ieed05:05-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Domingo P. Ximénez-de-Embún (email available below). General contact details of provider: https://edirc.repec.org/data/aedeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.