IDEAS home Printed from https://ideas.repec.org/f/pro1210.html
   My authors  Follow this author

Bahman Rostami-Tabar

Personal Details

First Name:Bahman
Middle Name:
Last Name:Rostami-Tabar
Suffix:
RePEc Short-ID:pro1210
[This author has chosen not to make the email address public]
http://www.bahmanrt.com

Affiliation

Cardiff Business School
Cardiff University

Cardiff, United Kingdom
http://business.cardiff.ac.uk/
RePEc:edi:cbscfuk (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.
  2. Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
  3. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
  4. Bahman Rostami‐Tabar & Mohamed Zied Babai & Aris Syntetos & Yves Ducq, 2014. "A note on the forecast performance of temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 489-500, October.
  5. Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.

    Cited by:

    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    2. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    3. Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
    4. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.

  2. Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.

    Cited by:

    1. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    2. Georgios Digkas & Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis & Ali Emrouznejad, 2020. "Measuring Spatio-temporal Efficiency: An R Implementation for Time-Evolving Units," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 843-864, December.
    3. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    4. George Drogalas & Konstantinos Petridis & Nikolaos E. Petridis & Eleni Zografidou, 2020. "Valuation of the internal audit mechanisms in the decision support department of the local government organizations using mathematical programming," Annals of Operations Research, Springer, vol. 294(1), pages 267-280, November.
    5. Konstantinos Petridis & Georgios Drogalas & Eleni Zografidou, 2021. "Internal auditor selection using a TOPSIS/non-linear programming model," Annals of Operations Research, Springer, vol. 296(1), pages 513-539, January.
    6. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
    7. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    8. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
    9. Kim, Juram & Hong, Suckwon & Kang, Yubin & Lee, Changyong, 2023. "Domain-specific valuation of university technologies using bibliometrics, Jonckheere–Terpstra tests, and data envelopment analysis," Technovation, Elsevier, vol. 122(C).
    10. Mohammad Izadikhah & Elnaz Azadi & Majid Azadi & Reza Farzipoor Saen & Mehdi Toloo, 2022. "Developing a new chance constrained NDEA model to measure performance of sustainable supply chains," Annals of Operations Research, Springer, vol. 316(2), pages 1319-1347, September.

  3. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.

    Cited by:

    1. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    2. Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
    3. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    4. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
    6. Sali, Mustapha & Ghrab, Yahya & Chatras, Clément, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," International Journal of Production Economics, Elsevier, vol. 263(C).
    7. Amiri-Aref, Mehdi & Klibi, Walid & Babai, M. Zied, 2018. "The multi-sourcing location inventory problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 266(1), pages 72-87.
    8. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.

  4. Bahman Rostami‐Tabar & Mohamed Zied Babai & Aris Syntetos & Yves Ducq, 2014. "A note on the forecast performance of temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 489-500, October.

    Cited by:

    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    2. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    3. Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.
    4. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    5. Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.

  5. Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.

    Cited by:

    1. Nikolaos Kourentzes & George Athanasopoulos, 2018. "Cross-temporal coherent forecasts for Australian tourism," Monash Econometrics and Business Statistics Working Papers 24/18, Monash University, Department of Econometrics and Business Statistics.
    2. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    3. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    7. Boylan, John E. & Babai, M. Zied, 2022. "Estimating the cumulative distribution function of lead-time demand using bootstrapping with and without replacement," International Journal of Production Economics, Elsevier, vol. 252(C).
    8. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    9. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    10. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    11. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    12. Omar, Haytham & Klibi, Walid & Babai, M. Zied & Ducq, Yves, 2023. "Basket data-driven approach for omnichannel demand forecasting," International Journal of Production Economics, Elsevier, vol. 257(C).
    13. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    14. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    15. Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.
    16. Murray, Paul W. & Agard, Bruno & Barajas, Marco A., 2018. "ASACT - Data preparation for forecasting: A method to substitute transaction data for unavailable product consumption data," International Journal of Production Economics, Elsevier, vol. 203(C), pages 264-275.
    17. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    18. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    19. Prak, Dennis & Teunter, Ruud & Babai, Mohamed Zied & Boylan, John E. & Syntetos, Aris, 2021. "Robust compound Poisson parameter estimation for inventory control," Omega, Elsevier, vol. 104(C).
    20. Bahman Rostami‐Tabar & Mohamed Zied Babai & Aris Syntetos & Yves Ducq, 2014. "A note on the forecast performance of temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 489-500, October.
    21. Babai, M. Zied & Dai, Yong & Li, Qinyun & Syntetos, Aris & Wang, Xun, 2022. "Forecasting of lead-time demand variance: Implications for safety stock calculations," European Journal of Operational Research, Elsevier, vol. 296(3), pages 846-861.
    22. Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Bahman Rostami-Tabar should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.